

25pts to earn here. Thanks! There will be a Blackboard submission assignment for this. I'll make an annoucement once I have it set-up. This will be due by 12-3-2020 at 10pm, Central Time.

Problem 72: (1pts) Suppose $f(x) = \log(x^2 - 7x + 6)$. Find the domain of f(x).

Problem 73: (1pts) Find values for a, c such that $y = c + a^x$ describes the graph given below: notice the blue dots are at (-1, 1.5) and (2, 5) respectively.

Problem 74: (1pts) Find values for b, c such that $y = \log_b(x - c)$ describes the graph given below: notice the blue dots are at (-1,0), (0,1) and (2,2) respectively.

Problem 75: (1pts) Simplify $\log(\log(10^{1000}))$

Problem 76: (3pts) Use the laws of logarithms to expand the following expressions:

(a.)
$$\log_3(9(x^2+3x+2))$$

(b.)
$$\ln\left(\frac{5x^3}{(1+x^2)^7}\right)$$

(c.) $\log(10^x 100^y 1000^z)$

Problem 77: (3pts) Use the laws of logarithms to combine the following expressions:

(a.) $\log_7(x^2-4) - \log_7(x+2) - \log_7(x-2)$

(b.) $2\log(x+1) - \log(x+2)$

(c.)
$$\frac{\ln(x+4)}{\ln 10} + \log(x)$$

Problem 78: (5pts) Solve the following equations.

(a.) $2^x - 3 = 5$

(b.)
$$e^{x^2} = e^9$$

(c.)
$$e^{3-5x} = 16$$

(d.)
$$\frac{7}{2+e^{-x}}=2$$

(e.)
$$4^x + 2^{3+2x} = 36$$

(f.)
$$e^{2x} - 3e^x + 2 = 0$$

(g.)
$$\log_5(x) + \log_5(x+1) = \log_5(20)$$

(h.)
$$\ln(x - \frac{1}{2}) + \ln(2) = 2\ln(x)$$

(i.)
$$\ln x = 10$$

(j.)
$$\log(x) + \log(x - 3) = 1$$

Problem 79: (1pt) Solve $\log_x(3) = \frac{1}{3}$.

Problem 80: (1pt) If $f(x) = 10^{3x-7}$ then find $f^{-1}(y)$.

Problem 81: (1pt) If $f(x) = \frac{1}{2 + e^{-x}}$ then find $f^{-1}(y)$.

Problem 82: (1pt) If $f(x) = \ln(\sqrt{x+1})$ then find $f^{-1}(y)$.

Problem 83: (1pt) Let $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$ and $\sinh(x) = \frac{1}{2}(e^x - e^{-x})$. Show that:

(a.) $\cosh x + \sinh x = e^x$

(b.) $\cosh(-x) = \cosh(x)$ and $\sinh(-x) = -\sinh(x)$

(c.) $\cosh^2 x - \sinh^2 x = 1$

Problem 84: (2pt) If $f(x) = \sinh x$ then find $f^{-1}(y)$ and express the formula in terms of a natural logarithm of an appropriate algebraic function. Graph both y = f(x) and $y = f^{-1}(x)$.

Problem 85: (3pt) Let $f(x) = \tanh(x)$ where $\tanh(x) = \frac{\sinh x}{\cosh x}$. Find the domain and range of this function then calculate the formula for $f^{-1}(y)$. Graph both y = f(x) and $y = f^{-1}(x)$.

¹here $\cosh^2(x) = (\cosh x)^2$ and $\sinh^2(x) = (\sinh x)^2$