You are allowed one page of notes and a calculator. No phones. More than 150pts to earn. Thanks!

Problem 1: (9pts) Suppose f(2) = 20 and g(2) = 2, and g(20) = 11. Calculate the following:

(a.)
$$(f+g)(2) = \underline{\hspace{1cm}}$$

(b.)
$$(fg)(2) = \underline{\hspace{1cm}}$$

(c.)
$$(g \circ f)(2) = \underline{\hspace{1cm}}$$

Problem 2: (15pts) Consider the graph y = f(x) given below. Answer the following questions using interval notation where appropriate. Fill in the blanks:

- (a.) the domain of $f(x) = \underline{\hspace{1cm}}$
- (c.) $f(4) = \underline{}$
- (d.) f(2) =______
- (e.) If $g(x) = x^2 + 4$ the calculate $(f \circ g)(2) = \underline{\hspace{1cm}}$.

Problem 3: (6pts) Let $f(x) = \begin{cases} 2x^2 + 3 & : -2 < x < 1 \\ \sqrt{x + 14} & : 1 \le x \le 3 \end{cases}$.

Given the function above, calculate:

(a.)
$$f(2) =$$
_______.

(b.)
$$f(-1) = \underline{\hspace{1cm}}$$

Problem 4: Let $f(x) = x^2 - 4x$. Carefully graph y = f(x) on the grid provided below (10pts). Also, find the range of the function and write it in interval notation (5pts).

Problem 5: (15pts) The difference quotient based at a for f(x) is given by $\frac{f(a+h)-f(a)}{h}$ where $h \neq 0$. Calculate and simplify the difference quotient for $f(x) = \frac{1}{x+3}$.

Problem 6: (10pts) Find the average rate of change from x = 6 to x = 8 for the function whose graph

Problem 7: (10pts) Given $f(x) = \sqrt{-x}$ and $g(x) = \sqrt{6+2x}$, calculate the formula for (f+g)(x) and find the domain of f+g.

Problem 8: (10pts) For the functions given above, find the formula and domain for f/g.

Problem 9: (12pts) If possible, graph the inverse function for each function graph below. If the function does not have an inverse explain why.

Problem 10: (18pts) Let $f(x) = (x+2)^3$ and $g(x) = \frac{1}{3-x}$. Find the formulas for:

(a.)
$$(f \circ g)(x) =$$

(b.)
$$(g \circ f)(x) =$$

(c.)
$$(f \circ f)(x) =$$

Problem 11: (10pts) Consider the graph $y = (x+6)(x+2)^2(x-3)(x-7)$. Sketch the graph and determine the number of local maximums as well as the number of local minimums.

Problem 13: (12pts) Given the function $f(x) = 41 + \frac{x}{x-3}$ calculate the formula for $f^{-1}(y)$.

Problem 14: (8pts) Find the domain and range f(x) given in the previous problem.