The following problems are adapted from your text. These are recommended homework.

The main distinction between my lecture and the text is that I use the imaginary exponential notation $e^{i\theta} = \cos \theta + i \sin \theta$ rather than the clumsy notation $cis(\theta) = \cos \theta + i \sin \theta$.

Problem 1: Find the length (also known as absolute value) of the following complex numbers:

- (a.) 5 + 3i,
- **(b.)** -7+i,
- (c.) -3-3i,
- (d.) $\sqrt{2} 6i$,
- (e.) 2i.

Problem 2: Write the following complex numbers in polar form. That is, find $r \ge 0$ and θ such that $z = re^{i\theta}$ for

- (a.) z = 2 + 2i,
- **(b.)** z = 8 4i,
- (c.) $z = -\frac{1}{2} \frac{1}{2}i$,
- (d.) $z = \sqrt{3} + i$,
- (e.) z = 3i.

Problem 3: Give z in polar form as below (note, I write $e^{i\theta} = \exp(i\theta)$ to make it easier to read), find $x, y \in \mathbb{R}$ for which z = x + iy. That is, find the Cartesian form of each z given below. Also graph the number in the complex plane to check your answer.

- (a.) $z = 7 \exp(i\pi/6)$,
- **(b.)** $z = 2 \exp(i\pi/3)$,
- (c.) $z = 4 \exp(i7\pi/6)$,

Problem 4: Another notation which is helpful to express polar coordinates of a complex number is the following: if $z = r \cos \theta + ir \sin \theta$ with $r = |z| \ge 0$ then $\angle(z) = \theta$. Find the Cartesian form of z given that:

- (a.) $|z| = 7, \angle(z) = 25^{\circ},$
- **(b.)** $|z| = 3, \angle(z) = 240^{\circ},$
- (c.) $|z| = \sqrt{2}, \angle(z) = 100^{\circ},$

Problem 5: Given z_1, z_2 as below find the polar form of their product z_1z_2

- (a.) $z_1 = 13e^{i\pi/4}$, $z_2 = 5e^{-i\pi/3}$,
- **(b.)** $z_1 = 10e^{i\pi/7}$, $z_2 = -5$,
- (c.) $z_1 = 3e^{i2\pi/3}$, $z_2 = \frac{1}{4}e^{i\pi/3}$,
- (d.) $z_1 = \sqrt{5}e^{i5\pi/8}$, $z_2 = \sqrt{15}e^{i\pi/12}$,
- (e.) $z_1 = 1 + i$, $z_2 = 3 4i$,

(f.)
$$z_1 = 2 + i$$
, $z_2 = 2 + i$.

Problem 6: Given z_1, z_2 as below find the polar form of their quotient $\frac{z_1}{z_2}$

(a.)
$$z_1 = 13e^{i\pi/4}$$
, $z_2 = 5e^{-i\pi/3}$,

(b.)
$$z_1 = 10e^{i\pi/7}$$
, $z_2 = -5$,

(c.)
$$z_1 = 3e^{i2\pi/3}$$
, $z_2 = \frac{1}{4}e^{i\pi/3}$

(d.)
$$z_1 = \sqrt{5}e^{i5\pi/8}$$
, $z_2 = \sqrt{15}e^{i\pi/12}$.

(e.)
$$z_1 = 1 + i$$
, $z_2 = 3 - 4i$,

(f.)
$$z_1 = 2 + i$$
, $z_2 = 2 + i$.

Problem 7: Find z^n in polar form for the following,

(a.)
$$z = 7 \exp(i\pi/6)$$
, find polar form of z^6

(b.)
$$z = 2 \exp(i\pi/3)$$
, find polar form of z^2

(c.)
$$z = 4 \exp(i7\pi/6)$$
, find polar form of z^3

(d.)
$$|z| = 7$$
, $\angle(z) = 25^{\circ}$, find polar form of z^{6}

(e.)
$$|z| = 3, \angle(z) = 240^{\circ}$$
, find polar form of z^3

Problem 8: Given $z = re^{i\theta}$ where r = |z| we define the **principle** *n*-th root of z by

$$\sqrt[n]{z} = \sqrt[n]{r} \exp(i\theta/n).$$

In contrast, the **set of** n**-th roots** of z are

$$z^{1/n} = \{ \sqrt[n]{z}, \sqrt[n]{z}\zeta_n, \sqrt[n]{z}\zeta_n^2, \dots, \sqrt[n]{z}(\zeta_n)^{n-1} \}$$

where $\zeta_n = \exp(2\pi i/n)$ is the **principle** *n*-th root of unity. Calculate $\sqrt[n]{z}$ and $z^{1/n}$ for the following complex numbers and choices of n,

(a.)
$$z = 16 \exp(4\pi i/3)$$
 and $n = 2$,

(b.)
$$z = -16$$
 and $n = 2$,

(c.)
$$z = 27 \exp(2\pi i/3)$$
 and $n = 3$,

(d.)
$$z = 8 \exp(7\pi i/4)$$
 and $n = 3$,

(e.)
$$z = 16 \exp(2\pi i/3)$$
 and $n = 4$,

Problem 9: We derived in lecture that $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$ and $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$. We also showed the imaginary exponential satisfies $e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)}$. Derive the following trigonometric identities via an algebraic arguments using imaginary exponentials:

(a.)
$$\cos^2 \theta = \frac{1}{2} (1 + \cos(2\theta))$$
 (I did this one in lecture.)

(b.)
$$\cos^3(\theta) = \frac{3}{4}\cos(\theta) + \frac{1}{4}\cos(\theta)$$

(c.)
$$\cos^4(\theta) = \frac{3}{8} + \frac{1}{2}\cos(2\theta) + \frac{1}{8}\cos(4\theta)$$

(d.)
$$\cos(2x)\sin(3x) = \frac{1}{2}\sin(x) + \frac{1}{2}\sin(5x)$$

- **Problem 10:** (bonus) The distance between z_1 and z_2 is the length of the complex number $z_2 z_1$; if we denote the distance from z_1 to z_2 by $d(z_1, z_2)$ then $d(z_1, z_2) = |z_2 z_1|$. Certain curves in the xy-plane can be described in terms of distance. In such a case, we can use complex notation to describe the curve.
 - (a.) a circle with radius R centered at (h,k) can be described as the collection of points distance R from the center (h,k). In complex notation, if z=x+iy satisfies |z-(h+ik)|=R then z is on the circle. Recall $|w|^2=w\overline{w}$ and show that the equation $|z-(h+ik)|^2=R^2$ is equivalent to the standard equation of the circle with radius R centered at (h,k).
 - (b.) Let $z_1 = a + ib$ and $z_2 = c + id$. Let C be the curve given by all z = x + iy for which $|z z_1| = |z z_2|$. Find the Cartesian equation of this curve. Name the curve.
 - (c.) Let C be the curve given by all z = x + iy for which |z + i| |z i| = 1. Find the Cartesian equation of this curve. Name the curve.
 - (d.) Let C be the curve given by all z = x + iy for which |z + i| + |z i| = 1. Find the Cartesian equation of this curve. Name the curve.
 - (e.) Let C be the curve given by all z = x + iy for which |z + 3| + |z 3| = 1. Find the Cartesian equation of this curve. Name the curve.