
You may use the provided unit-circle and formula sheet. You are also allowed a 3x5 inch card of notes.

Problem 1: (12pts) Match each graph with the appropriate formula by filling in the blank below each graph with the letter corresponding the formula:

- **(A.)** $y = 2\cos\left(\frac{\pi x}{2}\right) + 1$,
- **(B.)** $y = 2.5 \sec(0.4x)$,
- (C.) $y = -3\csc(4x)$.

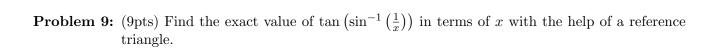
Problem 2: (8pts) Given $\sin \theta = -1/2$ and $\cos \theta = \sqrt{3}/2$ find $\csc \theta$.

Problem 3: (15pts) Use an appropriate identity to rewrite each of the following expressions:

- (A.) $\cos 3x \sin 5x + \sin 3x \sin 5x =$
- **(B.)** $\sin 3x + \sin 7x =$
- (C.) $\cos 6x \cos 10x =$

Problem 4: (5pts) Suppose $\sin A = 0$ where $0 \le A \le \pi/2$ and $\cos B = 2/7$. Calculate $\cos(A + B)$.

Problem 5: (6pts) Use trigonometric identities to rewrite the following expression in terms of $\cos \theta$:


$$1 - \frac{\tan^2 \theta}{\sec^2 \theta}$$

Problem 6: (6pts) Use trigonometric identities to simplify the following expression:

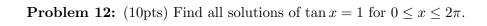
$$2\sin^2\theta + \cos(2\theta)$$

Problem 7: (6pts) If α , β and γ are angles in the same triangle, then prove that $\cos(\alpha + \beta) + \cos \gamma = 0$.

Problem 8: (6pts) The line $y = -x\sqrt{3}$ passes through the origin in the x, y-plane. What is the measure of the angle that the line makes with the negative x-axis?

Problem 10: (6pts) Write the range of each inverse function in interval notation on the blanks provided:

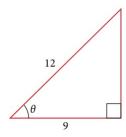
(A.)
$$range(\sin^{-1}) = \underline{\hspace{1cm}}$$

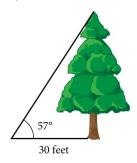

(B.)
$$range(\cos^{-1}) =$$

Problem 11: (15pts) Find a solution or state no solution exists.

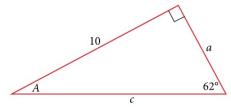
(A.)
$$\sin x = 0.3$$

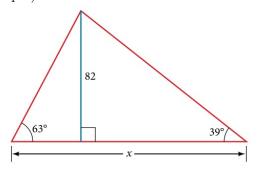
(B.)
$$\tan x = -1$$

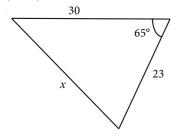

(C.)
$$\cos x = 2$$

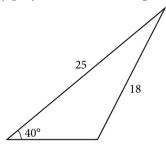

Problem 13: (10pts) Find all solutions of $\cos(3x) = 0$ for $0 \le x \le 2\pi$.

Problem 14: (10pts) Find all solutions of $2\sin^2 x + \sin x + 1 = 0$ for $x \in [0, 2\pi]$.


Problem 15: (6pts) Find the **length** of the side opposite θ and find θ :


Problem 16: (5pts) Find the height of the tree.


Problem 17: (10pts) Find the lengths a and c and find the measure of angle A of the triangle pictured below:


Problem 18: (10pts) Find x.

Problem 19: (5pts) Find x.

Problem 20: (5pts) Find the missing length of the triangle below:

