Math 114: Fall 2021

Test 3

You may use the provided unit-circle and formula sheet. You are also allowed a 3x5 inch card of notes.

Problem 1: (5pts) Find x.

Problem 2: Plot the vectors $\vec{u} + \vec{v}$ and $-2\vec{u}$ for \vec{u} and \vec{v} as given below:

Problem 3: Find the Cartesian form z_1 and z_2 . Also, plot z_1 and z_2 as points in the graph.

(a.)
$$z_1 = 5e^{i\pi/3}$$
,

(b.)
$$|z_2| = 4$$
 and $\angle z_2 = 210^o$,

Problem 4: If \vec{A} has A=5 and standard angle 45^o and \vec{B} has B=5 and standard angle 180^o then,

- (a.) find the Cartesian forms of \vec{A} and \vec{B} ,
- **(b.)** algebraically calculate $\vec{A} + \vec{B}$,
- (c.) find the magnitude and standard angle of $\vec{A} + \vec{B}$,

(d.) plot $\vec{A} + \vec{B}$ as it relates to \vec{A} and \vec{B} via the the tip-to-tail vector addition rule.

Problem 5: Write the following complex numbers in polar form.

(a.)
$$z = -2 - 2i$$
,

(b.)
$$z = 3i$$
,

Problem 6: Let z = 3 + i and w = -1 + i. Find the Cartesian and polar forms of $(z + w)^{10}$.

Problem 7: Find the polar form of the equation $x^2 + 2x + y^2 = 0$.

Problem 8: Graph $r = 5\sin(4\theta)$ using the grids given below:

Problem 9: (4pts) Find the standard angle (in degrees) and magnitude of each of the following vectors:

(a.)
$$\vec{C} = \langle -3, -4 \rangle$$

(b.)
$$\vec{D} = \langle 0, -10 \rangle$$

Problem 10: Let $\vec{A} = \langle 1, 2, -2 \rangle$ and $\vec{B} = \langle 3, 0, 4 \rangle$.

- (a.) find the magnitudes of \vec{A} and \vec{B}
- **(b.)** calculate $\vec{A} \cdot \vec{B}$
- (c.) find the angle between \vec{A} and \vec{B}
- (d.) are the vectors parallel, perpendicular or neither?

Problem 11: Let $\vec{A} = \langle 1, 2, -2 \rangle$ and $\vec{B} = \langle 0, 1, 1 \rangle$. Calculate $\vec{A} \times \vec{B}$.

Problem 12: (2pts) Let P = (0,0,0) and Q = (1,3,4) and R = (0,-4,3). Find the interior angles and the area of the triangle PQR. Is this triangle oblique? *hint: use vectors*

Problem 13: Let $z = 625 \exp(2\pi i/3)$. Calculate $\sqrt[4]{z}$ and all four complex numbers in $z^{1/4}$. Also, plot each answer in the complex plane provided below:

Problem 14: Use the formulas $\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$ and $\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$ to derive the identity $\cos(2x)\sin(3x) = \frac{1}{2}\sin(x) + \frac{1}{2}\sin(5x)$.