The text for this course is $Mathematical\ Analysis\ I$ second edition by Beatriz Laferriere, Gerardo Laferriere and Nguyen Mau Nam.

- Problem 1: Tell me something you learned from reading the article by Pete Clark.
- **Problem 2:** Let A, B, C, D be sets. Prove $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- **Problem 3:** Let A, B, C, D be sets where $A \subseteq C$ and $B \subseteq D$. Prove $A \times B \subseteq C \times D$.
- **Problem 4:** Let A, B, C be sets. Prove $A (B \cup C) = (A B) \cap (A C)$.
- **Problem 5:** Let $B, C \subseteq X$ where X is the universal set. Prove $\overline{B \cup C} = \overline{B} \cap \overline{C}$.

 Hint: you may reference the result of the previous problem
- **Problem 6:** Consider A, B, C finite sets. Let card(A) = |A| denote the number of elements in A. Consider using an appropriate picture (Venn Diagram) to solve the following:
 - (a.) Explain why $|A \cup B| = |A| + |B| |A \cap B|$.
 - **(b.)** Explain why $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$.

There are similar formulas for unions of more sets, however, Venn Diagrams are only easy to draw for up to 3 sets.

- **Problem 7:** Let $F: \mathbb{R}^{2\times 2} \to \mathbb{R}$ be defined by $F\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad bc$. Prove or disprove that F is one-to-one. Prove or disprove that F is onto.
- **Problem 8:** Exercise 1.2.2 from the text.
- **Problem 9:** Exercise 1.2.3 from the text.
- **Problem 10:** Exercise 1.2.4 from the text.
- Problem 11: Exercise 1.2.7 (just part (d)) from the text.
- **Problem 12:** Exercise 1.2.8 (just part (c)) from the text.
- **Problem 13:** Let A = [0, 2] and $B = \{1, 2, 3, 4\}$ define a relation on \mathbb{R} by $R = A \times B \subseteq \mathbb{R} \times \mathbb{R}$.
 - (a.) find the domain of R
 - (b.) find the range of R
 - (c.) is R a function?
- **Problem 14:** Define $C_k \subseteq \mathbb{R}^2$ by $C_k = F^{-1}(\{k\})$ where $F(x,y) = x^2 + y^2$ and $k \in [0,\infty)$. For each $(x_1,y_1), (x_2,y_2) \in \mathbb{R}^2$, define $(x_1,y_1)R(x_2,y_2)$ if and only if there exists $k \in [0,\infty)$ such that $(x_1,y_1), (x_2,y_2) \in C_k$. Prove R is an equivalence relation on \mathbb{R}^2 . Also, describe the equivalence classes of R and how they form a partition of \mathbb{R}^2 .

- **Problem 15:** Let $x, y \in \mathbb{Z}$ be R-related iff $y x \in 3\mathbb{Z} = \{3k \mid k \in \mathbb{Z}\}$. Prove R is an equivalence relation on \mathbb{Z} . Also, describe the equivalence classes of R and how they partition \mathbb{Z} .
- **Problem 16:** Suppose A and B each have n-elements. Prove a function $f: A \to B$ is injective iff f is surjective.
- **Problem 17:** Suppose A and B are infinite sets with the same cardinality and suppose $f: A \to B$ is a function. If f is injective then is f surjective? Likewise, if f is surjective then is f injective? Discuss.
- **Problem 18:** Explain how the cardinalities of the sets below are related. In particular, place the sets in order from smallest to greatest cardinality.

$$\mathbb{R}, (0, \infty), \mathbb{N}, [3, 7], \mathbb{Q}, \mathcal{P}(\mathbb{R}), \mathbb{Q} \times \mathbb{Q}, \{1, 2, 3, 4\}, \mathcal{P}(\{a, b\}), \emptyset$$

- **Problem 19:** Find a bijection from [0,1] to [4,8].
- **Problem 20:** Find a bijection from $(-\pi/2, \pi/2)^2$ to \mathbb{R}^2 .