Show work for full credit. 300pts to earn here. Please write using a pen or pencil which scans well.

- (1.) (20pts) Let A, B, C, D be sets. Suppose $A \subseteq B$ and $C \subseteq D$. Prove $A \times C \subseteq B \times D$.
- (2.) (25pts) Let $f(x) = 1 + e^x$. Find:
 - (a.) $f([0, \ln(2)])$
 - **(b.)** $f^{-1}([0,3])$
- (3.) (25pts) Let $f(x) = 3(x-1)^2$ define $f:[1,\infty) \to [0,\infty)$. Prove f is a bijection. That is, show f is both injective and surjective.
- (4.) (30pts) Suppose $a \neq 1$. Prove $1 + a + a^2 + \dots + a^n = \frac{1 a^{n+1}}{1 a}$ for all $n \in \mathbb{N}$.
- (5.) (20pt) Let $S = \{1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N}\}$. Find $\inf(S)$ and $\sup(S)$. No need for proof of your claims here, but beware partial credit cannot be given if you're incorrect and show no work.
- (6.) (20pts) Let $S = \{x \in \mathbb{R} \mid 0 < x < 1\} \cup \{1, 2, 3\}$. Find each isolated point of S. Also, explain which points in $\mathbb{R} S$ are limit points of S.
- (7.) (20pts) Suppose A, B are compact subsets of \mathbb{R} . Prove $A \cup B$ is compact.
- (8.) (30pts) Prove $\lim_{x\to 2}(x^3-1)=7$ by an explicit ϵ, δ -style argument.
- (9.) (30pts) Suppose $a \neq 0$ and $b \in \mathbb{R}$. Define f(x) = ax + b for each $x \in \mathbb{R}$. Prove f is continuous by an explicit ϵ, δ -argument based on the defn. of continuity.
- (10.) (20pts) Prove $a_n = \frac{n\cos(4n^2+2)}{n+3}$ has a convergent subsequence.
- (11.) (20pts) Let $f:[a,b] \to [3a,3b]$ be a continuous function. Prove f(x)=3x has a **unique** solution on [a,b].
- (12.) (20pts) Prove $\frac{d}{dx} \sin x = \cos x$ given that $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$ and $\lim_{h\to 0} \frac{1-\cos(h)}{h} = 0$.
- (13.) (20pts) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $F(x, y, z) = (x^3, x + 2y + 3z, x + y + z)$. Find the linearization of F at (x_o, y_o, z_o) . At which points does the inverse mapping theorem indicate the existence of a local inverse for F?