Show work for full credit. A scientific, non-graphing, calculator is allowed. You are also allowed one page of notes on regular sized paper front and back. At least 100pts to earn here.

- (1.) (10pts) Let A, B, C, D be sets. Suppose $A \subseteq B$ and $C \subseteq D$. Prove $A \times C \subseteq B \times D$.
- (2.) Suppose $x, y \in \mathbb{Z}$. Define $x \sim y$ if and only if there exists $j \in \mathbb{Z}$ for which y x = 4j.
 - (a.) (12pts) Prove that \sim defines an equivalence relation on \mathbb{Z} .
 - **(b.)** (5pts) List all the equivalence classes for \sim .
- (3.) (15pts) Let $f(x) = \frac{x}{x-2}$ for $x \in \mathbb{R}$ with $x \neq 2$. Find a set $B \subseteq \mathbb{R}$ for which $f: (-\infty, 2) \cup (2, \infty) \to B$ is a bijection. Once you make your choice of B, then prove f is a bijection.
- (4.) (18pts) Let $f(x) = 3 + (x-4)^2$. Find:
 - (a.) f([0,1])
 - **(b.)** $f^{-1}([0,1])$
 - (c.) $f^{-1}([3,4])$
- (5.) (15pts) Let $f: X \to Y$ be a function. Suppose $A, B \subseteq X$. Prove $A \subseteq B$ implies $f(A) \subseteq f(B)$.
- **(6.)** (15pts) Prove $1^3 + 2^3 + \dots + n^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$ for all $n \in \mathbb{N}$.
- (7.) (20pt) Let $S = \{\frac{2n}{n+3} \mid n \in \mathbb{N}\}$. Find $\inf(S)$ and $\sup(S)$. In addition, justify your claims.