Show work for full credit. A scientific, non-graphing, calculator is allowed. You are also allowed one page of notes on regular sized paper front and back. At least 100pts to earn here.

(1.) (10pts) Use limit laws and/or the appropriate theorem to show that

$$\lim_{n \to \infty} \left(\frac{n + \sin(n^4 + 4n + 17)}{3n^2 + 7} \right) = 0.$$

- (2.) (10pts) Prove $a_n = \cos\left(\frac{n\pi}{3}\right)$ is a divergence sequence.
- (3.) (10pts) Prove $a_n = \frac{n \sin(4n^2+2)}{n+3}$ has a convergent subsequence.
- (4.) (10pts) Prove $\lim_{x\to 2} \left(\frac{x+13}{7-x}\right) = 3$ by direct argument based on the $\varepsilon \delta$ definition of the limit.
- (5.) (10pts) Let $f(x) = 2x^2 + 3$. Prove f is continuous on \mathbb{R} by direct argument from the $\varepsilon \delta$ -definition of continuity.
- (6.) (10pts) Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be functions which are continuous at $x_o \in D$. Prove f + g is continuous at $x_o \in D$ by a by direct argument from the $\varepsilon \delta$ -definition of continuity.
- (7.) (10pts) Suppose A and B are compact subsets of \mathbb{R} . Prove $A \cap B$ is compact.
- (8.) (10pts) Fix $a, b, c \in \mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3 + ax^2 + bx + c$. Prove there exists $x_o \in \mathbb{R}$ for which $f(x_o) = 0$. You may assume it is known that f is continuous.
- (9.) (10pts) Let $f:[a,b] \to [2a,2b]$ be a continuous function. Prove f(x)=2x has a solution on [a,b].
- (10.) (10pts) Suppose f, g are continuous functions on \mathbb{R} and f(x) = g(x) for all $x \in \mathbb{R} \mathbb{Q}$. Prove f(x) = g(x) for all $x \in \mathbb{R}$. You may assume it is known that for each $x \in \mathbb{Q}$ there exists a sequence $\{x_n\}$ such that $x_n \in \mathbb{R} \mathbb{Q}$ for all $n \in \mathbb{N}$ and $x_n \to x$.
- (11.) (10pts) Choose to answer one of the following:
 - (a.) (10pts) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is nowhere continuous.
 - (b.) (10pts) Give an example of a continuous function whose nonempty domain has no limit points.