Please box your answer. Show work for full credit.

- (1.) (10pts) Let $f(x,y) = \sin(x^2y)$ calculate f_{xx} and f_{yy} and f_{xy} .
- (2.) (10pts) Calculate $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ (if it doesn't exist then explain why)
- (3.) (20pts) Let $f(x,y) = x^2 + 4xy + 6y^2$. For (a.) and/or (b.) leave answer (if any) as unit-vector with explicit decimal components to two decimal places.
 - (a.) in what direction(s) does f change at rate 9 at (2,0)?
 - **(b.)** in what direction(s) is f constant at (2,0)?
- (4.) (10pts) Let $f(x, y, z) = z \sin(x^2 + y^2)$. Calculate the rate of change of f in the $\langle 2, 1, 2 \rangle$ -direction at $\left(\frac{\sqrt{\pi}}{2}, \frac{\sqrt{\pi}}{2}, 17\right)$.
- (5.) (10pts) Suppose w = xy + yz and $x + y^3 + z = 1$. Calculate $\left(\frac{\partial w}{\partial x}\right)_y$.
- (6.) (10pts) Let $\rho = \sqrt{x^2 + y^2 + z^2}$. Show $\nabla \left(\frac{-1}{\rho}\right) = \frac{1}{\rho^3} \langle x, y, z \rangle$
- (7.) (10pts) Consider the graph $z = 3 + x^2 + y^2$. Find the equation of the tangent plane at (-1, 2, 8).
- (8.) (15pts) Consider the surface M given as the solution set of $y^2 + z^2/4 = 1$. Find the following:
 - (a.) the equation of the tangent plane to M at (7,0,2)
 - (b.) a parametrization of the tangent plane to M at (7,0,2)
- (9.) (5pts) Plot the level curve $F(x,y) = x^2/9 + y^2/4 = 1$ and sketch the gradient vector field ∇F along the curve. The curve plot should use a scale in which each box has length one. The vector field length for ∇F is unimportant, but, the direction is critical.
- (10.) (12pts) Let $\vec{r}(s,t) = \langle s^2, t, st \rangle$ be the parametrization of a surface M. Calculate the normal vector field $\vec{N}(s,t) = \frac{\partial \vec{r}}{\partial s} \times \frac{\partial \vec{r}}{\partial t}$ and find the equation of the tangent plane to M at (4,-1,2).
- (11.) (3pts) What is the Cartesian equation of M from the last problem?
- (12.) (5pts) Suppose $h_x(1,2) = 10$ and $h_y(1,2) = 3$. In addition, $x(u,v) = e^{3u} + \sin(\pi v)$ and $y(u,v) = uv^2 + v$. Let g(u,v) = h(x(u,v), y(u,v)) and calculate $\frac{\partial g}{\partial u}$ for u = 0 and v = 2.
- (13.) (10pts) A giant has an ice cream cone with a cap of ice cream given by $4x^2 + 5y^2 + 7z^2 = 16$ for $z \ge 0$ (in feet). Suppose a ninja dog named Earl runs over the ice cream and at the point (1,1,1) we measure both the dx/dt and dy/dt to be 3ft/s. What is the speed of Earl at (1,1,1)?