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4.3 Lecture 23: prime and maximal ideals

The definition below is very important. We need to remember and absorb these terms for the
remainder of our study of rings.

Definition 4.3.1. Let R be a commutative ring and A a proper ideal of R,
(i.) A is a prime ideal of R if a,b € R and ab € A impliesa € A or b € A.
(ii.) A is a maximal ideal of R if any ideal B of R with AC B C R has B= A or B=R.

The terminology of prime naturally ties into the concept of prime we know from our work in Z.
Recall that Euclid’s Lemma states that if a prime p | ab then p | a or p | b.

Example 4.3.2. Let p be a prime and consider the ideal pZ. If a.b € Z and ab € pZ then ab = pk
for some k € Z hence p | ab and thus p | a or p | b by Euclid’s Lemma. If p | a then a = pn for
some n € Z and hence a € pZ. Likewise, p | b then b € pZ. In summary, if p is prime then pZ is a
prime ideal.

I suppose I should mention, there is another way of definining a prime ideal which helps make
the correspondence between containment of ideals and divisibility of integers a bit more clear. See
Lecture 22 of my Math 307 notes if you're interested.

Example 4.3.3. Consider Zsg the ideals (2) and (3) are mazimal ideals in Zzg. On the other hand,
we also note (12) and (18) are mazimal ideals in (6). You can see the mazimality in the lattice

/\
AN /\

(4)

NN

(12) (18)

N/
(0)

You might notice Zzg/2%3s = Zo and Zsg/3Z3s = Z3 are both fields. What about (6)/(12) 2 I'll be
explicit,

(6) = {0,6,12,18,24,30} &  (12) = {0,12,24}

So, you can see,
(6)/(12) = {(12),6 + (12)} = Zy

Showing (22 + 1) is maximal in R[z] requires some careful calculation:
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rExample 4.3.4. Let A be an ideal of R[zx] for which (z* +1) C A C R[z] and A # (x> +1). In
other words, suppose (x*+1) is properly contained in A. There exists f(z) € A and f(z) & (z2+1).
By the division of polynomials, there exists q(x),r(z) € R[z] for which

f@) = q(@)(z* +1) + r(z)
andr(z) # 0 and r(x) = ax+b. Noter(z) # 0 indicates at least one of a,b is nonzero. Furthermore,
arx+b=f(z) —q(z)(z®+1)c A
since f(z) € A and q(z)(z? +1) € (2 4+ 1) C A and A is an ideal. Moreover,
a’z? —b? = (ax + b)(ax - b) € A

since the produce of ax +b € A and ax — b € R[z] must be in A again as A is an ideal. As (z%+1)
is contained in A we also may note a®(x? + 1) € A. Therefore,

0+#a®+ b = (a®z? + a®) — (a®z? - b?) € A

But, 1 = ET}FI)T(Q2 +b%) € A hence (1) C A and (1) = {(1)f(z) | f(z) € Rlz]} = R[z]. Therefore,
(22 + 1) is a mazimal ideal.

L
I followed Gallian on page 258-259 for the most part in the example above. Likewise, the next

example is Gallian’s Example 16 on page 259.

/'\
Example 4.3.5. In Zy[z] the ideal (z?+1) is not a prime ideal as (z+1)? = 22+ 2x+1=22+1¢€

(2 +1) yet z+1 ¢ (22 +1). To elaborate on the noncontainment claim, suppose x+1 € (z%+1)
for some f(x) € Zy[z] we need
z+1= f(z)(a® +1)

L why can we not solve the above for appropriate f(x) € Za[z]?

Theorem 4.3.6. Let R be a commutative ring with unity and let A be an ideal of R. The quotient
ring R/A is an integral domain if and only if A is prime.

~,

)

g

) S——

G

Proof: suppose R is a unital commutative ring with ideal A in R. Suppose R/A is an integral
domain. Let a,b € R and ab € A. Note,

A=ab+ A= (a+ A)b+ A)

thusa+ A=A or b+ A= A as R/A has no zero divisors (here A serves as zero in R/A). Hence
a€ Aorbe A

Conversely, suppose A is a prime ideal. We need to show R/A has no zero divisors. Suppose
(a+ A)(b+ A) = A then ab+ A = A hence ab € A. But, A is prime hence a € A or b € A thus
a+A=Aorb+ A= A Furthermore, denoting the unity of R as 1 we note that (1+ A)(r+ A) =
Ir+A=r+Aforeachr+A € R/A. Also, calculate (r+A)(s+A) =rs+A=sr+A = (s+A)(r+A)
hence R/A is a commutative ring. Therefore, R/A is an integral domain. [J

Theorem 4.3.7. Let R be a commutative ring with unity and let A be an ideal of R. The quotient
ring R/A is a field if and only if A is mazimal.
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Proof: suppose R is a commutative ring with unity 1 € R and suppose A is an ideal of B. Assume
R/A is a field. Consider an ideal B of R for which A C B C R with A # B. It follows there
exists z € B for which = ¢ A hence x + A # A which means z + A is a nonzero element in
R/A. Since R/A is a field and 1 + A serves as the unity we have the existence of y + A for which
(z+A)(y+A) =1+ A. Thus, zy + A=1+ A and we find 1 — zy € A. However, x € B implies
2y € B as B is an ideal. Since A € B we find 1 — 2y € B. Thus,

zy+(l—zy)=1€¢ B

But, z = 1(z) € B for each z € R hence B = R and we find A is a maximal ideal.

Conversely, suppose A is a maximal ideal. Suppose z € R yet 2 ¢ A. In other words, we consider
a nonzero element z + A in R/A. Construct,

B={zr+a|re€Rac A}

I'll leave it to the reader to verify that B is indeed an ideal of R. Moreover, if ¢« € A then
note a = z(0) + a € B thus A € B. By maximality of A we have B = R. Therefore, 1 € B
and we find there exists r € R,a € A for which zr +a¢ = 1l or 1 —2r = a € A. QObserve,
(z+A)(r+A) =zr+ A =1+ A. Thus z+ A has multiplicative inverse r+ A in R/A. Furthermore,
we note that (1+A)(r+A) =1r+A =r+ A for each r+ A € R/A. Also, calculate (r+A)(s+A) =
rs+A=sr+A=(s+A)(r+A) hence R/A is a commutative ring with unity where every nonzero
element has a multiplicative inverse. That is, R/A forms a field. O

Example 4.3.8. Since a field is an integral domain it follows that a mazximal ideal must be a
prime tdeal in view of Theorems 4.8.6 and 4.3.7. On the other hand, we can exhibit an ideal which
is prime, but, not mazimal. Consider (z) in Z|z] if f(z),9(z) € Z[z] and f(z)g(z) € (x) then
f(2)g(z) = zh(z) for some h(z) € Z[z]. It follows that x must be a factor in f(x) or g(x) thus
f(z) € (z) or g(z) € {z) and we find (z) is a prime ideal of Z[z]). Consider, (z,2) contains (x) since
(z,2) = {zf(z) + 29(z) | f(z),9(z) € Z]z]} so to obtain (x) simply select elements with g(x) = 0.
On the other hand, 2 € (z,2) and 2 ¢ (z). Also, 1 € Z[z] and 1 ¢ (2,z) hence (z) C (2,z) C Z[z].
This proves (z) is not mazimal.

®



Proporinion : Asserme A it wmmubhve nhg with I €R, ﬁ[:
U * a ) \“w"i
The  ided M it moxined ided & R s a Feld

(=>) Sulpope M is a max/'mw/ I’M. ftf)pd.ce Xer
(j,z)f XxXé& M. Ta othar Ward,r/ e Gncidan Q
Non 2/o e/le,;'v\n)"\‘k x+ M e R/j\/\ i thff’/uuf

B={xr+m|reR mem}

We Can prove & is on (e G-FL;L@{'

XC 4 M, XG+M, € B Ahwun
(x6 #iy )~ (xr, +m) = X (G-T) +h-pl, € B

(X +m)(Xr, +m) = X (GXG+m,r 4—m.r;)+m,m,_éb>

Ay B s « subrfné omd F e R A4hen
r(xr+m) = xrn)+ rm € 6

sine meM reR = tm e M oo M & anided
Henew B is an (ded of R, let 3 e M
fhan B = X(0)+ 3 € B +4hu, ME B,

By moximedity we fird G =R

Gonseguently, 1 € B und JreR, meM A

whin Xr+m =| > [=xc =m e M Thuy

(x+ W\)(r +1\1\) = xe +W = |0

s (kA0 = e N € R/ 2 R/m s
o (/Ommuh/{’\\Jc ({Aa w‘\X\r\ Q\IC/7 Nen 2¢ro e (et
o unit . Thex (s R/JV\. s« ‘F\‘e(co,//




