

LECTURE 6 : PROPERTIES OF IDEALS (§7.4 of D&F)

①

Assume R is a ring with identity $1 \neq 0$ for this lecture. We do not generally assume R is commutative.

Defn/ Let $A \subseteq R$.

(1.) Let (A) denote smallest ideal of R containing A .

We say (A) is the ideal generated by A .

(2.) $RA = \{r_1a_1 + r_2a_2 + \dots + r_na_n \mid r_i \in R, a_i \in A, n \in \mathbb{N}\}$

$AR = \{a_1r_1 + a_2r_2 + \dots + a_nr_n \mid r_i \in R, a_i \in A, n \in \mathbb{N}\}$

$RAR = \{r_1a_1r_1' + \dots + r_na_nr_n' \mid r_i, r_i' \in R, a_i \in A, n \in \mathbb{N}\}$

Also, if $A = \emptyset$ then $RA = AR = RAR = 0$

(3.) An ideal generated by a single element is called a principal ideal

(4.) An ideal generated by a finite set is finitely generated ideal

We can prove RA is a left ideal, AR is a right ideal and RAR is a two-sided ideal all of which contain A . When R is commutative $RA = AR = RAR = (A)$.

Proposition: If R is commutative then (a) is an ideal

Proof: Let $a \in R$ then for commutative R consider $r \in R$ and let $x \in (a) = \{as \mid s \in R\}$ so $x = as$ and hence $xr = asr \in (a)$ since $sr \in R$ thus $r(a) \subseteq (a)$. Let $x, y \in (a)$ then $\exists r_x, r_y \in R$ s.t. $x = r_x a$ and $y = r_y a$ thus $xy = (r_x a)(r_y a) = (r_x a r_y) a \in (a)$ and $x-y = (r_x - r_y)a \in (a)$ since $r_x a r_y, r_x - r_y \in R$ thus (a) is subring with $R(a) \subseteq (a)$
 $\therefore (a)$ is ideal.

Let's think a little about how principal ideals interact with the concept of divisibility.

Defn For R a commutative ring, we say $a | b$ or "a divides b" if $\exists r \in R$ such that $b = ra$ in which case we also say b is a multiple of a.

Thus observe for commutative ring R ,

$$(a) = \{ra \mid r \in R\} = \text{set of multiples of } a.$$

$$b \in (a) \Leftrightarrow \begin{cases} b = ra \\ \text{for some } r \in R \end{cases} \Leftrightarrow a | b$$

E1 For $R = \mathbb{Z}$, $x \in (10) = 10\mathbb{Z} \Rightarrow 10 | x$.

Notice, $10\mathbb{Z} \subset 2\mathbb{Z}$ and $10\mathbb{Z} \subseteq 5\mathbb{Z}$

that is $(10) \subset (2)$ and $(10) \subset (5)$ and $2 | 10$ and $5 | 10$.

Thm For commutative ring R containing a, b , $(a) \subseteq (b) \Leftrightarrow b | a$.

Proof: suppose $(a) \subseteq (b)$ then notice $a \cdot 1 = a \in (a)$
hence $a \in (b)$ thus $a = br \Rightarrow b | a$.

Conversely, suppose $b | a$ then $\exists r \in R$ s.t. $a = br$.

Let $x \in (a)$ then $\exists s \in R$ s.t. $x = as = brs \in (b)$
as $rs \in R$. Thus $(a) \subseteq (b)$. //

Proposition: Let I be an ideal of R .

(1.) $I = R$ iff I contains a unit

(2.) Given R commutative, R is a field \Leftrightarrow only ideals of R are R and 0

Proof: (1) If $I = R$ then $1 \in R = I$ thus I contains a unit.

conversely, if I contains unit u with $uv = vu = 1$ then for $r \in R$ notice $r = rvu \in rV I = I$ thus $r \in I$ hence $R = I$ since $I \subseteq R$ is given.

(2.) Suppose R is commutative.

\Rightarrow Assume R is a field and I is an ideal.

If $I \neq 0$ then $a \in I$ where $a \neq 0$

hence $a^{-1} \in R$ and $a^{-1}a = 1 \in I$

thus a is a unit and by (1), $I = R$.

\Leftarrow Suppose the only ideals of R are R and 0 .

Let $a \in R$ with $a \neq 0$ then $(a) = R$

hence, as we assume $1 \in R$, $ar = 1$ for

some $r \in R \Rightarrow a \text{ is a unit} \therefore R \text{ is field.}$

Corollary: If R is a field then any nonzero ring homomorphism from R into another ring is an injection

Proof: $f: R \rightarrow A$ has $\ker(f)$ an ideal of R . If f is nonzero then $\ker(f) \neq R \Rightarrow \ker(f) = 0 \therefore f$ injective.

(4)

Def³ An ideal M in an arbitrary ring S' is called a maximal ideal if $M \neq S'$ and the only ideals containing M are M and S'

E2 An example of a ring without a maximal ideal can be constructed with \mathbb{Q} given the usual addition but a nonstandard multiplication $x: \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q}$

$$a * b = 0$$

for all $a, b \in \mathbb{Q}$. This makes $(\mathbb{Q}, +, *)$ a ring.

It can be shown (SIDE QUEST, 10 pts) that \mathbb{Q} has no maximal subgroups (this rabbit trail \Rightarrow §6.1 #16, §3.2 #21, §1.6 #20) and §1 #15 & §1.6 #20
 $\therefore (\mathbb{Q}, +, *)$ has no maximal ideals.

Note the ring in **E2** is not unital. It turns out that if R has a multiplicative identity $1 \neq 0$ then maximal ideals must exist.

PROPOSITION: In a ring containing 1 every proper ideal is contained in a maximal ideal.

PROOF: (following Dummit & Foote p. 254 we look to use Zorn's Lemma)

Let R be a ring with $1 \in R$ and let I be a proper ideal. Note $R = 0$ is forbidden. Let

$$S = \{ J \mid J \neq R, J \text{ ideal with } I \subseteq J \}$$

Observe $I \in S$ hence $S \neq \emptyset$. Note S is partially ordered via inclusion. If C is a chain in S then

let

$$J = \bigcup_{A \in C} A$$

Observe $J \neq \emptyset$ since $0 \in A \Rightarrow 0 \in J$. Suppose $a, b \in J$ then $\exists A, B \in C$ s.t. $a \in A$ and $b \in B$. But note either $A \subseteq B$ or $B \subseteq A$ and thus $a - b \in J$

Proof continued

Working to show $J = \bigcup_{A \in G} A$ is an ideal, we show J is subring. Notice J is closed under mult. by R since $RA \subseteq A$ and $AR \subseteq A$ for each $A \in G$ hence $RJ \subseteq J$ and $JR \subseteq J$ by def² of union. Thus J is an ideal. If J is not proper then $J = R$ thus $1 \in J$. Thus $1 \in A$ for some $A \in G$ which is $\Rightarrow \Leftarrow$ since $A \in G \subseteq S$.

Therefore, each chain has an upper bound in S .

By Zorn's Lemma S has maximal element

which serves as a maximal proper ideal containing I_+

ZORN'S LEMMA: If Σ is a nonempty partially ordered set in which every chain has an upper bound then Σ has maximal element.

Defⁿ A partial order on a nonempty set Σ is a relation on Σ denoted \leq satisfying

$$(1.) \ x \leq x$$

$$(2.) \text{ if } x \leq y \text{ and } y \leq x \text{ then } x = y, \forall x, y \in \Sigma$$

$$(3.) \text{ if } x \leq y \text{ and } y \leq z \text{ then } x \leq z, \forall x, y, z \in \Sigma.$$

Defⁿ Let the nonempty set Σ be partially ordered by \leq

(1.) A subset B of Σ is called a chain

if for all $x, y \in B$ either $x \leq y$ or $y \leq x$.

(2.) An upper bound for the subset B of Σ is an element $x \in \Sigma$ s.t. $b \leq x \ \forall b \in B$.

(3.) A maximal element of Σ is $m \in \Sigma$ s.t. if $m \leq x$ for any $x \in \Sigma$ then $m = x$.

4.3 Lecture 23: prime and maximal ideals

The definition below is very important. We need to remember and absorb these terms for the remainder of our study of rings.

Definition 4.3.1. Let R be a commutative ring and A a proper ideal of R ,

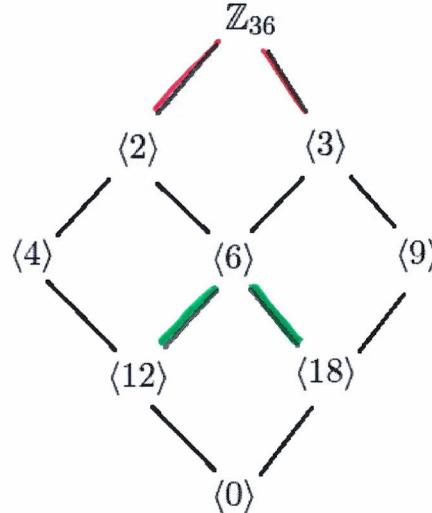
- (i.) A is a **prime ideal** of R if $a, b \in R$ and $ab \in A$ implies $a \in A$ or $b \in A$.
- (ii.) A is a **maximal ideal** of R if any ideal B of R with $A \subseteq B \subseteq R$ has $B = A$ or $B = R$.

The terminology of prime naturally ties into the concept of prime we know from our work in \mathbb{Z} . Recall that Euclid's Lemma states that if a prime $p \mid ab$ then $p \mid a$ or $p \mid b$.

Example 4.3.2. Let p be a prime and consider the ideal $p\mathbb{Z}$. If $a, b \in \mathbb{Z}$ and $ab \in p\mathbb{Z}$ then $ab = pk$ for some $k \in \mathbb{Z}$ hence $p \mid ab$ and thus $p \mid a$ or $p \mid b$ by Euclid's Lemma. If $p \mid a$ then $a = pn$ for some $n \in \mathbb{Z}$ and hence $a \in p\mathbb{Z}$. Likewise, $p \mid b$ then $b \in p\mathbb{Z}$. In summary, if p is prime then $p\mathbb{Z}$ is a prime ideal.

I suppose I should mention, there is another way of defining a prime ideal which helps make the correspondence between containment of ideals and divisibility of integers a bit more clear. See Lecture 22 of my Math 307 notes if you're interested.

Example 4.3.3. Consider \mathbb{Z}_{36} the ideals $\langle 2 \rangle$ and $\langle 3 \rangle$ are maximal ideals in \mathbb{Z}_{36} . On the other hand, we also note $\langle 12 \rangle$ and $\langle 18 \rangle$ are maximal ideals in $\langle 6 \rangle$. You can see the maximality in the lattice diagram below:



You might notice $\mathbb{Z}_{36}/2\mathbb{Z}_{36} \cong \mathbb{Z}_2$ and $\mathbb{Z}_{36}/3\mathbb{Z}_{36} \cong \mathbb{Z}_3$ are both fields. What about $\langle 6 \rangle/\langle 12 \rangle$? I'll be explicit,

$$\langle 6 \rangle = \{0, 6, 12, 18, 24, 30\} \quad \& \quad \langle 12 \rangle = \{0, 12, 24\}$$

So, you can see,

$$\langle 6 \rangle/\langle 12 \rangle = \{\langle 12 \rangle, 6 + \langle 12 \rangle\} \cong \mathbb{Z}_2$$

Showing $\langle x^2 + 1 \rangle$ is maximal in $\mathbb{R}[x]$ requires some careful calculation:

*we do
find
easier
arguments
later.*

Example 4.3.4. Let A be an ideal of $\mathbb{R}[x]$ for which $\langle x^2 + 1 \rangle \subseteq A \subseteq \mathbb{R}[x]$ and $A \neq \langle x^2 + 1 \rangle$. In other words, suppose $\langle x^2 + 1 \rangle$ is properly contained in A . There exists $f(x) \in A$ and $f(x) \notin \langle x^2 + 1 \rangle$. By the division of polynomials, there exists $q(x), r(x) \in \mathbb{R}[x]$ for which

$$f(x) = q(x)(x^2 + 1) + r(x)$$

and $r(x) \neq 0$ and $r(x) = ax + b$. Note $r(x) \neq 0$ indicates at least one of a, b is nonzero. Furthermore,

$$ax + b = f(x) - q(x)(x^2 + 1) \in A$$

since $f(x) \in A$ and $q(x)(x^2 + 1) \in \langle x^2 + 1 \rangle \subseteq A$ and A is an ideal. Moreover,

$$a^2x^2 - b^2 = (ax + b)(ax - b) \in A$$

since the product of $ax + b \in A$ and $ax - b \in \mathbb{R}[x]$ must be in A again as A is an ideal. As $\langle x^2 + 1 \rangle$ is contained in A we also may note $a^2(x^2 + 1) \in A$. Therefore,

$$0 \neq a^2 + b^2 = (a^2x^2 + a^2) - (a^2x^2 - b^2) \in A$$

But, $1 = \frac{1}{a^2+b^2}(a^2 + b^2) \in A$ hence $\langle 1 \rangle \subset A$ and $\langle 1 \rangle = \{(1)f(x) \mid f(x) \in \mathbb{R}[x]\} = \mathbb{R}[x]$. Therefore, $\langle x^2 + 1 \rangle$ is a maximal ideal.

I followed Gallian on page 258-259 for the most part in the example above. Likewise, the next example is Gallian's Example 16 on page 259.

Example 4.3.5. In $\mathbb{Z}_2[x]$ the ideal $\langle x^2 + 1 \rangle$ is not a prime ideal as $(x+1)^2 = x^2 + 2x + 1 = x^2 + 1 \in \langle x^2 + 1 \rangle$ yet $x+1 \notin \langle x^2 + 1 \rangle$. To elaborate on the noncontainment claim, suppose $x+1 \in \langle x^2 + 1 \rangle$ for some $f(x) \in \mathbb{Z}_2[x]$ we need

$$x+1 = f(x)(x^2 + 1)$$

why can we not solve the above for appropriate $f(x) \in \mathbb{Z}_2[x]$?

Theorem 4.3.6. Let R be a commutative ring with unity and let A be an ideal of R . The quotient ring R/A is an integral domain if and only if A is prime.

Proof: suppose R is a unital commutative ring with ideal A in R . Suppose R/A is an integral domain. Let $a, b \in R$ and $ab \in A$. Note,

$$A = ab + A = (a + A)(b + A)$$

thus $a + A = A$ or $b + A = A$ as R/A has no zero divisors (here A serves as zero in R/A). Hence $a \in A$ or $b \in A$.

Conversely, suppose A is a prime ideal. We need to show R/A has no zero divisors. Suppose $(a + A)(b + A) = A$ then $ab + A = A$ hence $ab \in A$. But, A is prime hence $a \in A$ or $b \in A$ thus $a + A = A$ or $b + A = A$. Furthermore, denoting the unity of R as 1 we note that $(1 + A)(r + A) = 1r + A = r + A$ for each $r + A \in R/A$. Also, calculate $(r + A)(s + A) = rs + A = sr + A = (s + A)(r + A)$ hence R/A is a commutative ring. Therefore, R/A is an integral domain. \square

Theorem 4.3.7. Let R be a commutative ring with unity and let A be an ideal of R . The quotient ring R/A is a field if and only if A is maximal.

Proof: suppose R is a commutative ring with unity $1 \in R$ and suppose A is an ideal of R . Assume R/A is a field. Consider an ideal B of R for which $A \subseteq B \subseteq R$ with $A \neq B$. It follows there exists $x \in B$ for which $x \notin A$ hence $x + A \neq A$ which means $x + A$ is a nonzero element in R/A . Since R/A is a field and $1 + A$ serves as the unity we have the existence of $y + A$ for which $(x + A)(y + A) = 1 + A$. Thus, $xy + A = 1 + A$ and we find $1 - xy \in A$. However, $x \in B$ implies $xy \in B$ as B is an ideal. Since $A \subseteq B$ we find $1 - xy \in B$. Thus,

$$xy + (1 - xy) = 1 \in B$$

But, $x = 1(x) \in B$ for each $x \in R$ hence $B = R$ and we find A is a maximal ideal.

Conversely, suppose A is a maximal ideal. Suppose $x \in R$ yet $x \notin A$. In other words, we consider a nonzero element $x + A$ in R/A . Construct,

$$B = \{xr + a \mid r \in R, a \in A\}$$

I'll leave it to the reader to verify that B is indeed an ideal of R . Moreover, if $a \in A$ then note $a = x(0) + a \in B$ thus $A \subseteq B$. By maximality of A we have $B = R$. Therefore, $1 \in B$ and we find there exists $r \in R, a \in A$ for which $xr + a = 1$ or $1 - xr = a \in A$. Observe, $(x + A)(r + A) = xr + A = 1 + A$. Thus $x + A$ has multiplicative inverse $r + A$ in R/A . Furthermore, we note that $(1 + A)(r + A) = 1r + A = r + A$ for each $r + A \in R/A$. Also, calculate $(r + A)(s + A) = rs + A = sr + A = (s + A)(r + A)$ hence R/A is a commutative ring with unity where every nonzero element has a multiplicative inverse. That is, R/A forms a field. \square

Example 4.3.8. Since a field is an integral domain it follows that a maximal ideal must be a prime ideal in view of Theorems 4.3.6 and 4.3.7. On the other hand, we can exhibit an ideal which is prime, but, not maximal. Consider $\langle x \rangle$ in $\mathbb{Z}[x]$ if $f(x), g(x) \in \mathbb{Z}[x]$ and $f(x)g(x) \in \langle x \rangle$ then $f(x)g(x) = xh(x)$ for some $h(x) \in \mathbb{Z}[x]$. It follows that x must be a factor in $f(x)$ or $g(x)$ thus $f(x) \in \langle x \rangle$ or $g(x) \in \langle x \rangle$ and we find $\langle x \rangle$ is a prime ideal of $\mathbb{Z}[x]$. Consider, $\langle x, 2 \rangle$ contains $\langle x \rangle$ since $\langle x, 2 \rangle = \{xf(x) + 2g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\}$ so to obtain $\langle x \rangle$ simply select elements with $g(x) = 0$. On the other hand, $2 \in \langle x, 2 \rangle$ and $2 \notin \langle x \rangle$. Also, $1 \in \mathbb{Z}[x]$ and $1 \notin \langle 2, x \rangle$ hence $\langle x \rangle \subset \langle 2, x \rangle \subset \mathbb{Z}[x]$. This proves $\langle x \rangle$ is not maximal.

PROPOSITION: Assume R is commutative ring with $1 \in R$.
 The ideal M is maximal ideal $\Leftrightarrow R/M$ is a field. (9)

(\Rightarrow) Suppose M is a maximal ideal. Suppose $x \in R$ yet $x \notin M$. In other words, we consider a nonzero element $x + M \in R/M$. Construct,

$$B = \{xr + m \mid r \in R, m \in M\}$$

We can prove B is an ideal of R . Let

$xr_1 + m_1, xr_2 + m_2 \in B$ then

$$(xr_2 + m_2) - (xr_1 + m_1) = x(r_2 - r_1) + m_2 - m_1 \in B$$

$$(xr_2 + m_2)(xr_1 + m_1) = x(r_2 x r_1 + m_2 r_1 + m_1 r_2) + m_1 m_2 \in B$$

thus B is a subring and if $r \in R$ then

$$r(xr_1 + m_1) = x(rr_1) + rm_1 \in B$$

since $m_1 \in M, r \in R \Rightarrow rm_1 \in M$ as M is an ideal.

Hence B is an ideal of R . Let $z \in M$

then $z = x(0) + z \in B$ thus $M \subseteq B$.

By maximality we find $B = R$.

Consequently, $1 \in B$ and $\exists r \in R, m \in M$ for which $xr + m = 1 \Rightarrow 1 - xr = m \in M$. Thus

$$(x + M)(r + M) = xr + M = 1 + M$$

Thus $(x + M)^{-1} = r + M \in R/M \therefore R/M$ is a commutative ring with every nonzero element a unit. That is, R/M is a field. //