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Example 4.1.36. Define Q[v2] = {a +bv2 | a.b € Q}. This is not a finite integral domain! Yet.

(a4 bv2)(x + g/\/§) = ar+ 2by + (ay + b.r)\/§

and of course (a +bv2) + (x + yv2) = (a + )+ (b+ y)V2 hence Q[v/?2] is closed under addition
and multiplication. Furthermore. if a + byv/2 # 0 then we can solve (a + bW2)(x+yv2)=1mR

and derive
S ,l/\/i . 1 : a— bv2 . uq- b.\/?
a+bv2  (a+bV2)(a—by2) a*— 20

hence (a+bv2)™!' = 4 %_,b_\/} and as a®>—2b> # 0 for a.b € Q we note TR _F—[)T € Q.

a?=2b2

Therefore. weve shown every nonzero element in (@[\/5] is a unit. The field Q[v/2] is larger than

Q but. still much smaller than R which contains many more irrational numbers.

Definition 4.1.37. The characteristic of a ring 13 s the smallest posieec beger [or which
ne =0 for all v € R. We denote the character of R by char(R) = n. 1] nwo such inleger coists then

we say char(R) = 0,

In practice, we usually can judge the character of a ring by how its identity behaves.

Theorem 4.1.38. If R is a ring with unity | then R has characteristic zero if 1 has infinite order.

If 1 has additive order n then char(R) = n.

Proof: If 1 has infinite additive order then there is no positive n for which n -1 = 0 and hence R
1| = n in the additive sense. That is n-1 =0 and n

has characteristic zero. Otherwise, suppose
is the least positive integer for which we obtain 0. Calculate.

n-r=rx+xr+---+r=lr+ler+---+ler=1+14+---+1)ax=(n-1)r=0x=0.
N, et .

n—summands

therefore char(R) = n. [J

Theorem 4.1.39. The characteristic of an integral domain is cither O or a prime.

Proof: notice if 1 has infinite order than char(R) = 0 and we're done. So. suppose n -1 = 0 where

[1| = n in the additive sense. Let us suppose n = st for some 1 < s.t < n. Calculate.

O=n-1=(st)-1=(s-1)(t-1)

hence either s-1 = 0 or t-1 = 0 thus either s = n and t = 1 or s = 1 and t = n since |1| = n.

We've determined factors of n are 1 and n hence n is prime. [J
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4.4 Lecture 24: ring homomorphism and field of fractions

We saw the concept of homomorphism allowed us connect groups which seemed the same in terms
of their group structure. In the same way, the concept of ring homomorphism gives us a precise
method to describe when two rings share similar structure. Or, in the case of isomorphism, the
rings in question are, from the viewpoint of algebraic structure, the same. Much of this section
directly echoes our previous work on groups, as such I will omit some proofs. In contrast, the field
of quotients construction at the end of this Lecture is fascinating and new.

Definition 4.4.1. A ring homomorphism ¢ from a ring R to a ring S is a function ¢ : R — 8
which preserves the ring operations:

(i.) ¢(a+b) = ¢(a)+ ¢(b) for all a,b € R,
(ii.) ¢(ab) = &d(a)e(b) for all a,b € R.
(iii.) @(1r) = 1s.
If ¢ is a bijective ring homomorphism then ¢ is o ring isomorphism and we write R= S

The meaning of R = 5 should be clear from the context. We use = to indicate an isomorphism of
groups or rings as appropriate.

Example 4.4.2. Consider ¢ : Z — Z,, defined by ¢(x) = [z],. Observe, ¢ is a function since the
domain is Z so there is no ambiguity in z € Z2.

pr+y)=lztylh=lgh+h=0¢)+d) &  dzy) =2yl = [2halyln = 6(2)0(y)

for allz,y € Z. Thus Z and Z,, are homomorphic rings under the ring homomorphism ¢. Inciden-
tally, this is the natural homomorphism which also call the coset map since Z, is the factor
ring of Z by nZ and [z], = © + nZ, so we could write ¢p(z) = x + nZ.

Example 4.4.3. The map ¢(z) = z* is a ring isomorphism from C to C with respect to the usual
complex arithmetic where I intend the compler conjugate given by (x +iy)* =z —1iy for z,y € R.

You can check:
(w) = 2wt & (r4w) =2

thus ¢ is a ring homomorphism. In fact, ¢ : C — C is an automorphism of C since ¢ = ¢ as
(¥)* = 2z for each z € C. You can verify, ¢*> = Id thus ¢ is an automorphism of order 2.

My next example is an deeper version of Gallian’s Example 3 on page 271.

Example 4.4.4. The evaluation map is an important homomorphism which connects a ring R

with polynomials R[x]. Pick a € R and define ¢o(f(x)) = f(a) for each f(x) € R[zx]. Observe,
ba((f + 9)(@)) = (f + g)(a) = f(a) + g(a) = da(f(x)) + da(g(z))

and

¢a((f9)(2)) = (f9)(a) = fla)g(a) = da(f(2))¢a(g(z))

thus ¢q : R[z] = R is a ring homomorphism.

%in contrast, g([z].) = = is rather disfunctional

F
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Theorem 4.4.5. Let ¢ : & — S be a ring homomorphism from o ring R to a ring S. Let A be a
subrng of R and B an ideal of S
(i.) for anyr € R and n € N, ¢(nr) = ng(r) and ¢(r™) = (¢(r))",
(ii.) ¢(A) is a subrng of S
(iii.) if A is an ideal and ¢(R) = S then ¢(A) is an ideal of S
(iv.) ¢~Y(B) is an ideal of R
(v.) if R is commutative then ¢(R) is commutative
(vi.) ¢ is an isomorphism iff ¢ is surjective and Ker(¢) = {r € R | ¢(r) =0} = {0}.
(vii.) If ¢ : R — S is a ring isomorphism of then ¢~ : S — R is a ring isomorphism.
Proof: similar to those given for groups. Main difference, for the multiplicative properties we

cannot use the existence of inverses. However, if you study our proofs for the corresponding group
claims then you’ll see we can adopt those proofs with little modification. OJ

Notice the additive kernel determines injectivity of the ring homomorphism. This is not surprising
as (R.+) enjoys the structure of an abelian group so the injectivity from trivial kernel is precisely
our group theoretic theorem.

Theorem 4.4.6. Let ¢ : R — S be a ring homomorphism from a ring R to a ring S. Then
Ker(¢) = {r € R | ¢(r) = 0} is an ideal of R.

Proof: suppose ¢ : R — S is a ring homomorphism. Suppose a,b € Ker(¢) then ¢(a) = 0 and
¢(b) = 0 consequently,

¢(a—b) = ¢(a) - ¢(b) =0-0=0,
and for r € R,
d(ra) = o(r)d(a) = d(r)0=0 &  ¢(ar) = ¢(a)p(r) = 04(r) = 0.
Thus a — b € Ker(¢) and ar,ra € Ker(¢) for all a,b € Ker(¢) and r € R. We find Ker(¢) is an
ideal via Theorem 4.2.2. U]
The first isomorphism theorem is also available for rings:

Theorem 4.4.7. Let ¢ : R — S be a ring homomorphism. Then the mapping from R]/Ker(¢) to
#(R) given by r + Ker(¢) — ¢(r) is a ring isomorphism; R/Ker(¢) = ¢(R).

Proof: exercise for the reader. [J

The next theorem is also available for groups. This is Theorem 15.4 on page 274 of Gallian.

Theorem 4.4.8. Every ideal of a ring R is the kernel of a ring homomorphism of R. In particular,
an ideal A is the kernel of the mapping r — 7+ A from R to R/A.

Proof: if 4 is an ideal of I? then the quotient ring R/A is well-defined and we construct 7 : R —
R/A by n(r) =r 4+ A. Observe,

rr+s)=r+s+A=Fr+A)+(s+A)=7(r)+mn(s)

and
w(rs) =rs+ A= (r+ A)(s+ A) = n(r)m(s)

for each r, s € R. Morover, Ker(r) = A hence A is the kernel of a ring homomorphism. [J

)
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Example 4.4.9. Consider ¢ : Z[z] — Z defined by ¢(f(z)) = f(0). Since ¢ is a surjective
ring homomorphism with Ker(¢) = (z) we have by the first isomorphism theorem Z[z]/{(z) = Z.
However, we know Z is an integral domain hence by Theorem 4.3.6 we find (x) is a prime ideal of
Zlz]. Indeed, by Theorem 4.3.7 we also see (x) is not mazimal as Z is not a field.

Theorem 4.4.10. If R is a ring with unity 1 then the mapping ¢ : Z — R defined by ¢(n) =n-1
18 a ring homomorphism.

Proof: recall n -1 is a notation for n-fold additions of 1 for n € N or k-fold additions of —1 if
k = —n € N. The proof is given on page 274-275 of Gallian. Essentially, this affirms that:

(m+n)-1l=m-1+n-1 & (m-1)(n-1)=(mn)-1 O

Corollary 4.4.11. If R is a ring and Char(R) = n > 0 then R contains a subring which is
isomorphic to Z,. If Char(R) = 0 then R contains a subring which is isomorphic to Z.

Proof: Construct

S={k-1|keZ}
in view of from Theorem 4.4.10 we note ¢(k) = k-1 is a homomorphism of Z and R and by
construction ¢(R) = S. Suppose Char(R) = n, then Ker(¢) = {k € Z | k-1 = 0} = nZ. Hence, by
the first isomorphism theorem, Z/Ker(¢) = ¢(R) which gives Z/nZ = S. If R has characteristic
zero then S = Z/(0) = Z. O

Corollary 4.4.12. For any positive integer m, the mapping ¢ : Z — Ly, defined by ¢(z) = [z, is
a ring homomorphism.

Proof: note [z]y, = [1+ 14 -+ 1],y = 2 [1];n hence ¢(z) = [z], is a mapping with the same
form as that given in Theorem 4.4.10. [J

The calculation in the Corollary above, the main point is that [z}, = 2 - [1],n. We needed to make
this same calculational observation in several past problems. For example, it is the heart of why
homomorphisms from Z, to Z; have the form [z], — [mz]; where k | mn (Problem 72).

Corollary 4.4.13. (Steinitz, 1910): If F is a field of characteristic p then F contains a subfield
which is isomorphic to Zp. If F is a field of characteristic 0, then F contains a subfield isomorphic
to the rational numbers.

Proof: if F is a field of characteristic p then as a field is also a ring by Corollary 4.4.11. Thus F
contains a subring isomorphic to Z,. If F has characteristic 0 then F has a subring S isomorphic
to Z and we can construct a copy of Q@ from § as follows:

Sg = {ab™! | a,b € S with b # 0} O

Definition 4.4.14. Given a field F the subfield of B which is contained in all other subfields of F
18 called the prime subfield of F.

We can argue from Steinitz Theorem that the prime subfield of F is either Q or Z,. Any field of
characteristic zero has Q as its smallest subfield. Any field of prime p characteristic has Z, as its
smallest subfield.
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Theorem 4.4.15. Let D be an integral domain. Then, there exists a field F that contains a subring
isomorphic to D.

Proof: an explicit and beautiful construction, see page 277-278 of Gallian. I may change the
notation a bit. The notation which Gallian uses is the notation we wish to use in eventuality, but,
to begin we should divorce our thinking from the familar so we don’t assume more than we ought
from the notation.

Let D be an integral domain with 1 the unity in D. Let § = {(a,b) | a,b € D. b # 0}. Define
(a,b) ~ (¢, d) if* ad = be. We prove ~ forms an equivalence relation on S:

(i.) let (a,b) € S then (a,b) ~ (a,b) since ab = ba ( D is a commutative ring )
(ii.) if (a,b) ~ (¢, d) then ad = be hence ¢b = da thus (¢.d) ~ (a,b).

(iii.) if (a,b) ~ (e,d) and (c,d) ~ (e, f) then ad = bc and ¢f = de. Consider, by
associativity of multiplication and the known data on a,b, ¢, d, e, f,

(ad)f = (be) f = blcf) = b(de)

Thus (af)d = (be)d where (c,d) € S hence d # 0 and by the cancellation property
of integral domains we find af = be hence (a,b) ~ (e, f)

Therefore, ~ is a reflexive, symmetric and transitive relation on S. Denote the equivalence class
containing (a,b) by [a,b] = {(¢,d) | (¢, d) ~ (a,b)}. We claim that S/ ~ the set of equivalence classes
of § under ~ forms a field with respect to the following operations of addition and multiplication:

la,b] + [c, d] = [ad + bc, bd] & [a,b][e, d] = [ac, bd].

We must show these operations are well-defined since we used a representative to define the rule
for an equivalence class. Suppose (a,b) ~ (a’,V’) and (¢, d) ~ (¢/,d’) hence ab/ = ba’ and cd’ = d¢.
Observe that

lad +bc,bd] = [d'd + b/, b'd']  ifand only if  (ad + be)b'd' = bd(a'd' + ¥'¢).
Thus consider:
(a,d + be)b'd' = (ab')(dd") + (cd')(bb) = (ba)(dd) + (dc')(bb) = bd(d'd' + V).
Therefore addition on S/ ~ is well-defined. Next, observe that
[ac,bd] = [o'c,¥'d]  ifand only if  (ac)(t'd") = (bd)(d'c)

Consider then,
(ac)(t'd’) = (ab')(cd") = (ba')(dc') = (bd)(a'c)

Therefore, multiplication on S/ ~ is well-defined. It remains to verify addition and multiplica-
tion satisfy the field axioms. T’ll begin by noting the operations are commutative since D is a
commutative ring:

[a,b] + [c,d] = [ad + be, bd] = [cb + da, db] = [e, d] + [a, b]

8yes, intuitively, we want (a,b) to model the fraction a/b whatever that means... surely a/b = ¢/d gives ad = bc
hence this definition

mm;@%“
w5 3

(



4.4. LECTURE 24: RING HOMOMORPHISM AND FIELD OF FRACTIONS 141

likewise,
[a,b][c, d] = [ac, bd] = [ca, db] = [c, d][a, b].

Let z € D be nonzero, and [a, b] € S/ ~. Note:
la,b] + [0, z] = [ax + b(0), bx] = [ax, bx] = [a, b]

as (ax,bx) ~ (a,b) is easy to verify (remember z # 0). We find [0, z] serves as the additive identity
of §/ ~. Next, consider [1,1] and [a,b] € §/ ~,

[a; B][1,1] = [a(1),6(1)] = [a, 8]

hence [1,1] is the unity of S/ ~. Multiplicative inverse is easy [a,b] # 0 has a,b # 0 hence [b,a} is
in S/ ~ and
[a, b][b, o] = [ab, ba] = [1,1]

as (ab,ba) ~ (1,1) is easy to verify. Associativity,
[a.8] + (le.d] + [e, 1) = [a,b] + [ef + de. df] = [a(df) + (cf + de)b, bd]

and

([a,b] + [e.d]) + [e, f] = [ad + be, bd] + [e. f] = [(ad + be) f + e(bd). bdf]

Thus addition is associative. I leave it to the reader to prove associativity of multiplication as
well as the needed distributive properties linking addition and mulitplication. In summary, we
have shown S/ ~ is a field. It remains to explain how it contains a subring which is isomorphic
to D. You should not be surprised when I tell you that ¢ : D — S/ ~ defines an injective ring
homomorphism if we set ¢(z) = [z, 1]. Notice, ¢(z) = [z.1] = 0 implies z = 0 hence Ker(¢) = {0}.
Moreover,

p(x+y) = [r+y, 1] = [z(1) + 1(y), 1D)] = [z. 1] + [, 1] = é(2) + &(y)

and

d(zy) =[xy, 1] = [z, 1(1)] = [z, 1]y, 1] = ¢(z)9(y)

for all z,y € D. Thus D/{0} == ¢(D) by the first isomorphism theorem of rings and hence
D=¢(D). O

Definition 4.4.16. The field F constructed from an integral domain D as in the proof above is
called the field of quotients of D. We use the notation a/b or & for the equivalence class [a,b].
We have shown,

F:{%la,bED,byéO}

is a field where we define
a ¢ ad+bc a ¢ ac

2747 8 b d b
You can trace back through the proof of the field of quotients construction to see we have proved
all the usual properties of rational numbers:
0

a
a0y

_ _a
Y bz b

b ar
a
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So, on the one hand, this proof we went over just now proves that Q exists if we are given Z. On
the other hand, it allows us to construct abstract fields which play the same role for a given integral
domain as does Q for Z. Personally, I view this construction and the clarity it can bring to what
rational numbers are as a high point of abstract algebra. Is 1/2 and 3/6 the same number? I say
emphatically yes. We have shown 1/2 = 3/6 because the rigorous definition of Q says a/b = c¢/d
only if ad = be and surely we can agree 1(6) = 2(3). Now, does a given rational number have many
different fractions which represent the same number? Yes. We also can agree about that. The
pair (1,2) # (3,6). In any event, we should keep in mind, equivalence classes are always with us
whether we understand them or not. You might read this post by Paul Garrett.

Example 4.4.17. If D = Z[z] then the field of quotients for D is the set {f(z)/g(x) | f(z),9(z) €
Z[z], g(z) # O}
Example 4.4.18. If D = F[z] then the field of quotients for D is the set {f(z)/g(z) | f(z),9(z) €

Flz], g(x) # 0} = F(x) the rational functions over F. For F = R this is just the usual rational
functions.

Example 4.4.19. The notation Zy[z] is polynomials with Z,-coefficients. In contrast, Zy(z) =
{f(z)/g(z) | f(z),g9(z) € Zp[z], g(x) # 0}. This gives an ezample of an infinite field with charac-

teristic p.

Outside this conversation, I might be tempted to agree that fields with finite characteristic are
finite fields. This is clearly false by our last example !




