
Calculus !

James S. Cook
Liberty University

Department of Mathematics

Fall 2013



2

preface

how to succeed in calculus

I do use the textbook, however, I follow these notes. You should use both. From past experience
I can tell you that the students who excelled in my course were those students who both studied
my notes and read the text. They also came to every class and paid attention. I recommend the
following course of study:

1. submit yourself to learn, keep a positive attitude. This course is a lot of work. Yes, probably
more than 3 others for most people. Most people have a lot of work to do in getting up to
speed on real mathematical thinking. There is no substitute for time and effort. If you’re
complaining in your mind about the workload etc... then you’re wasting your time.

2. read my notes.

3. come to class, take notes, think.

4. attempt the homework, you will likely find forming a study group is essential for success here.

practical philosophy for this course

Let’s begin with several questions:

1. what is math?

2. how should we understand math?

3. how should we do math?

I’ll begin with 1, if you listen to the general public you’ll get the idea that math is about numbers.
For this reason people are often puzzled when they hear about people who are ”mathematicians”.
Can you really make a living just from studying numbers? Well, yes. However, most practicing
mathematicians study more abstract aspects of mathematics. We’ll just scratch the surface of
modern math in the calculus sequence. At this time in history you could spend your whole life
studying nothing but math and you would still be missing large portions of mathematics. In a
typical math major you’d take courses in: calculus I, II and III, differential equations, complex
variables, probability and statistics, discrete math, proofs and logic, linear algebra, abstract alge-
bra and real analysis. In addition, if you’re a bit more ambitious you might like to study manifold
theory, measure theory, fiber bundles, Lie algebras, Lie groups, topos theory, point-set topology,
algebraic topology, homology, category theory, quivers, algebraic geometry, noncommuative ge-
ometry, Riemannian geometry, semi-groups, complex analysis, vertex operator algebras, tropical
geometry, set theory, modules, inverse problems, variational calculus, differential Galois theory,
Galois theory, number theory, combinatorics, partial differential equations, symmetry methods in
DEqns, tensor calculus, differential forms, vector bundles, gauge theory, poisson algebras, homo-
topy, Atiyah-Singer index theorem, nonstandard analysis, construction of the real numbers... If
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you searched online you could add to my list. My point? This list is just a tiny subset of the
topics which mathematicians continue to actively study. Math is not done. Math is much more
than numbers. I’ll not attempt a definition of math here, however the concept of definition is
probably the most crucial distinguishing feature of math from other fields of study. Mathemati-
cal definitions cut much more finely than other fields of study. To know math is to know definitions.

That brings us to item 2, my last sentence needs clarification. Knowledge and understanding are
not necessarily the same thing. Many people have knowledge of Christ, few people understand who
He is in their heart. Knowledge is necessary but it is not sufficient. How then should we understand
mathematics? What process is needed? There is no one answer to this question. Answers include:
analyzing historical story which led to the current definition, consistency with other mathematics,
seeing how math is applied in the real world, working out examples of a general definition in specific
contexts, intuition or creative leaps,... to summarize: all these suggestions boil down to spending
time to get to know the math.

Finally we get to the real point here. I suspect you think of math primarily as item 3. Nothing
wrong with that based on your experience thus far in math. I’d be surprised if you had a teacher
before who emphasized the ”why” rather than the ”how” of mathematics. This is perhaps the
primary distinguishing feature of university calculus: we aspire to calculate with maximal under-
standing. We ought not use a theorem unless we have an idea of how to prove it. This is our
goal. In all the courses I teach in mathematics I attempt to provide proofs for those theorems and
propositions which I claim to be true. Granted, there is not always enough time, but we should be
ready to give a defense for those truths which we hold dear.

Humility is required from the outset. Some things we cannot understand completely with the tools
which are currently at our disposal. Calculus is built with real numbers. I will not attempt to
construct real numbers from first principles. Instead, our starting point is to assume that real
numbers exist, replete with their standard properties. From those rules we will build the calculus.

format of my notes

These notes were prepared with LATEX. You’ll notice a number of standard conventions in my notes:

1. definitions are in green.

2. remarks are in red.

3. theorems, propositions, lemmas and corollaries are in blue.

4. proofs start with a Proof: and are concluded with a �.

5. often figures in these notes were prepared with Graph, a simple and free math graphing
program.



4

Finally, please be warned these notes are a work in progress. I look forward to your input on
how they can be improved, corrected and supplemented. I prepared them with LATEXwhich is the
standard format for modern mathematical literature. It is open source software and if you are a
math major it is a great idea to start experimenting with LATEXfor report-writing etc...

You are free to read whatever you wish about calculus, but keep in mind that this current version
of notes is closest to my expectations of argument and logic for this course.

The exercises indicated in the previous comments are still incomplete. It is unlikely these will be
added this semester, however, I will leave the whitespace in the interest of future edits. Note,
comments about the text generically refer to Briggs and Cochcrane. The section on asymptotic be-
haviour of functions is also still in the works... students might motivate me to work on that section.
Finally, please note I rely on the required text for the last week of class on hyperbolic functions
and their calculus. There are scattered examples and a good introduction given in the introductory
chapter. However, I will share some deeper thoughts (not in this current set of notes) on Days 65-68.

James Cook, July 16, 2013.
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Chapter 1

history and applications of calculus

1.1 geometry

The ancient Chinese, Greeks, Egyptians and Babylonians all had some understanding of numbers
and geometry. Apparently the pythagorean theorem a2 + b2 = c2 was known to Babylonians as
early as 1700 BC1. Pythagorus was one of the earliest Greek mathematicians (572-497 BC) and his
followers the pythagoreans were an interesting bunch. They elevated math to a form of mysticism.
Their creed was that numbers were the substance of all things. Calculations were tied to music to
make the mystic connection between numbers and reality and they used special geometric patterns
to aid arithmetic calculations. Plato(429-348 BC) and Aristotle(387-322 BC) advanced the cause
of axiomatic reasoning. For mathematics this probably was a good thing. For physics, not so
much. Aristotle’s flawed physical ideas were so philosophically appealing that we were unable to
escape them for over a milennia. Of course, all physical ideas are flawed at some level, Aristotle’s
physics did explain much, but the explanations were hardly what we could call mathematical. That
said, the axiomatic approach did inspire Euclid to make his book of elements at a level of rigor
which was valuable to many future generations of mathematicians. Geometry is the perhaps the
earliest example of an accurate mathematical model of reality. In fact, for about 2000 years no
one could convincingly imagine any other idea of geometry. The study of physics for things which
don’t move is called statics. The architecture of ancient societies speak to the fact that mathe-
matics were known to at least some in those societies. Probably much has been lost. The history
of mathematics is full of multiple discoveries of mathematical theorems, it is common for different
mathematicians to find the same theorems even though they never met, or perhaps even lived in
the same time.

1see pg. 30 of Katz’ History of Mathematics second ed., page 45 has nice summary of different societies respective
mathematical achievements
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1.2 numbers

What about numbers? The ancients certainly knew about whole numbers and fractions. The
phythagoreans took it a step further and realized that there must be more than just numbers of
that type. They proved that the hypotenuse of a triangle had a length that need not be a fraction.
For example, if you consider a right triangle with side lengths 1 and 1 then the hypotenuse must
have length

√
2. They actually proved that

√
2 could not have the form p/q for a pair of whole

numbers p, q. One way to understand the development of numbers is to understand the questions
which prompted their discovery:

1. enumeration or counting leads us to natural numbers and zero.

2. accounting leads us to negative numbers since you can either make money or lose it.

3. fractions also come from commerce or manufacture; you take a pie and cut it into fractions.

4. analytic two-dimensional geometry leads us to irrational numbers; triangles can have irrational
side-lengths.

5. algebra leads us to complex numbers. The solution to the cubic equation necessitates complex
numbers even in the case that the solutions are real.

6. three dimensional geometry leads us to quaternions. Hamilton showed how to use quaternions
to describe motion in three dimensions. Later, Gibbs and others supplanted this formalism
with the notation of vectors which we still use to this day.

7. quantum mechanics for fields leads us to super numbers. Berezin invoked mathematics which
demanded the variables anticommute. Such variables can be thought of as taking values in
the super numbers.

There are dozens if not hundreds of other types of numbers. This list is merely reflects my interest
in physics. In almost every case when a new type of number was discovered it would be relegated
to a lesser status than those earlier known numbers. There was a time when mathematicians
would not count negative solutions because they weren’t ”real” solutions. Later, Kronecker and
his followers eschewed use of non-rational numbers. To them the worth of transcendental numbers
was in doubt. In my experience students rarely doubt the validity of real numbers. The decimal
expansion is quite convincing and we have machines which say it’s true so it must be, right? Those
same machines will sometimes closemindedly say that x2 + 1 = 0 has no solution. But, x2 + 1 = 0
does have solution. It’s just an imaginary solution. Gauss proved that imaginary numbers exist in
about 1800. Of course, mathematicians had used complex numbers in one way another for about
200 years before Gauss. This course is primarily focused on real numbers however I will spend
some time discussing complex numbers from time to time. Quaternions and supernumbers are less
likely to arise this semester.
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1.3 algebra and physics

The connection between physics and algebra is profound. It is this connection that allowed Galileo
and Newton to push past the ”common sense” of Aristotle. Galileo(1554-1642) studied Archimedes
and Aristotle, but he found the later to be illogical. His reaction to his doubt is what changed
things, rather than being content to make purely philosophical objections he took it a step further
and investigated through experiments to deduce what the correct rules were. For example, through
the study of balls rolling down inclines he was able to deduce the formula y = 1

2gt
2, the height

dropped is proportional to the square of the time, independent of weight. Galileo’s work helped
provide a back-drop for Newton and others who were able to explain how Galileo’s equations arose
from basic physics. Kepler(1571-1630) also used math to study astronomical data collected by
Tycho Brahe over several decades. Upon Brahe’s death Kepler tried to fit the data to show the
planets traveled in circles around the sun (the heliocentric circular model was proposed to Europe
by Nicolaus Copernicus(1473-1543)). However, the data forced Kepler to admit that the planets
actually travel in ellipse according to what we now call it Kepler’s Laws. In a nutshell, Kepler
observed the planets orbit in ellipses while sweeping out equal areas in equal times such that the
square of the semi-major axis was proportional to the cube of the period. Obviously, to understand
these statements you need to have the idea of Cartesian coordinates. Interestingly, Kepler actually
was not so happy about the data’s seeming departure from the supposed perfect symmetry of
circles. He spend a large amount of his later years trying to fit the solar system into his system
of platonic solids. Platonic solids are regular polyhedra which can be inscribed in a sphere: these
are associated to the four basic elementals of the ancient greeks: the cube of earth, fire of the
tetrahedron, air of the octahedron, water of the icosahedron and over them all the universe of
the dodecahedron. Kepler wanted to somehow use the platonic solids to model space. It didn’t
work. All of this laid the foundation for the discovery of calculus. I suppose there were two major
changes that were in motion at the time just before and including Newton. First, flat earth or
earth-centered cosmology was being more and more doubted as evidence mounted for Copernican
heliocentric models. The observations of Galileo of moons orbiting Jupiter made the possibility of
orbital motion undeniable. Second, the idea that math should be used to phrase physical ideals was
encouraged by the methodology of Galileo, Kepler and others. The physical question that would
lead Newton to calculus was prompted by all of these events.

1.4 discovery of calculus

The term ”calculus” apparently originates from the ancient Romans practice of using tiny pebbles
to calculate. A calculus was one such pebble. The greeks, chinese and probably others discovered
portions of calculus, but none of them possessed a notation which made the ideas accessible to
anyone except experts. In contrast, we ordinary mortals can understand calculus without making
it our life’s work (although, you may feel that way at certain points this semester). Archimedes(287-
212 BC) made arguments that very much mirror arguments we have only formalized in the 19-th
century. His argument to determine the value for π shows he had an idea much like we will formalize
with limits. Beyond limits calculus is largely motivated by two problems:
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1. what is the tangent line to a given shape?

2. what is the area of some shape?

Both of these will be solved carefully this semester by applying appropriate limiting processes. The
ancients had no formal method for limits, but they did have some intuitive grasp of limits. The
idea of dividing an area into smaller pieces to add together to find the net-area is hardly new to
Newton’s time. Solutions to various tangent problems also existed before calculus. Isaac Barrow
was Newton’s teacher before his great discoveries and Barrow did important work on the tangent
problem. In fact, Barrow had some understanding of the fundamental theorem of calculus. He
understood something about the connection between tangents and areas, however he did not ap-
preciate the importance enough to push the theory forward.

Sir Isaac Newton(1642-1727) was the first to see clearly the connection between these seemingly
disparate problems of areas, tangents and physics. In physics, Newton insisted his answers were
mathematically phrased. He took Galileo’s ideal to a whole new level. He was also unkind to those
who refused to follow this route, apparently Hooke said he solved some of the problems Newton
solved concerning gravitation. However, Hooke’s solution lacked mathematical clarity so Newton
rejected his ideas and went so far as to eliminate mention of Hooke in his Principia. Newton insisted
physical law must be mathematical.

Let me say just a bit more about what distinguished Newton’s historical period from that of
say Galileo(1554-1642). The representation of irrational numbers by decimal expansions was ap-
parently due to work by the French mathematician Viete (1540-1603), the Dutch mathematician
Stevin(1548-1620) and the Scottish mathematician John Napier(1550-1617)2. Modern symbolism
for algebra was not known to the ancients as far as we know. The compact notation we use today
was arrived at through a progression of steps. See Katz’ text for details. In a nutshell our notation
is due to Viete(1540-1603), Descartes(1596-1650) and Fermat(1601-1665). Descartes’ master work
set forth a framework in which Newton was free to conduct concrete geometric experiments while
the number system put forth by Stevin gave a notation to think about numbers of arbitrarily small
magnitude. Basically, the mathematics needed to make calculus happen only arose in the 50 years
or so before Newton made his great advances3 By the time Newton came of age the ideas of analytic
geometry and unending decimal expansions of numbers were taught in the university. In retrospect,
Descartes and Fermat were close to the discovery, but they were missing the fundamental theorem
of calculus. They understood parts of the puzzle, but Newton and Leibniz grasped the big picture.

Despite the great success of Newton’s version of calculus, it was not entirely rigorous. His argu-
ments involved the use of fluxions which were strange quantities which were not zero but were
really really small. How small you ask? Well, if you divided one by a fluxion then you’d obtain ∞.

2page 418 of Katz’ text
3a point made by Joseph L. McCauley in his historical section of Classical Mechanics. If you want to read a really

bitter history of what the church did wrong to science then this is not a bad source. The bias is glaring, I can respect
that.
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What were these fluxions and what is ∞? It was easy to set aside these worries because the list of
problems that Newton solved grew ever larger as his discoveries came to light in the 17-th century.
After postulating his laws of mechanics he was able to derive the formula found by Galileo. Then,
prompted by Edmund Halley, he proved Kepler’s Laws follow from his universal law of gravitation.
Anyway, we could go on about Newton for many pages. Even after all this success there were those
mathematicians who were unhappy because at the base of it all these fluxions seemed ad-hoc and
not so well-posed mathematically.

Gottfried Wilhelm Leibniz(1646-1716) independently discovered calculus after Newton but pub-
lished it before him. Leibniz also lacked formal rigor at the base of his theory, but his notation
was superior to Newton’s and for that reason we still use many notations first introduced by Leibniz.

If you’d like to see more about fluxions or early history of calculus there are many good books. Or,
you could just download the original works from the internet. Much is available for download at
this time. Beware historians, all too often they have some ulterior motive in their story telling. Of
course the history I give here is purely objective4.

1.5 a selection of mathematical stories

Mathematics has enjoyed an incredible expansion of thought since the time of Newton. I’ll just
say a word or three about some of the more notable names. There are two sort of developments in
this list, First, there are mathematicians who see past the ad-hoc methods of earlier generations to
put in place a better explaination which has more logical consistency. Second, there are those who
push forward to solve or ask new problems which generalize the method.

1. The Bernoulli family solved or were involved in the solution of many of the most difficult
problems of Newton’s time. The main three you hear about are the brothers Jakob(1654-
1705) and Johann(1667-1748) and Daniel(1700-1782). The problem you often hear about is
the following: what shape will a chain hang if suspended between two points? DiVinci and
Galileo tried unsuccessfully to solve it. Galileo though hanging chain should take shape of
parabola, but was proven wrong by a Jesuit priest Ignatius Pardies(1636-1673). Apparently,
Jakob raised the problem again around 1690, but his brother Johann solved it. He had good
company, Leibniz and Christiaan Huygens(1629-1695) also solved the problem, apparently
Leibniz solved it first but gave notice in a popular journal that he would withhold his solu-
tion to give other mathematicians a chance to solve it as well. Daniel and the brothers Jakob
and Johann made significant contributions to differential equations and solve the problem of
motion through a medium with friction.

4just joking, this history is a work in progress, I welcome corrections if there are mistakes concerning content
(grammatical mistakes are for your amusement).
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2. Pierre-Simon de Laplace(1749-1827) in his Celestial Mechanics (english translation, the orig-
inal title in French since Laplace was very French) put forth nearly complete solutions for
the motion of planets. He founded a method called perturbation theory which would prove
necessary to correctly apply Newtonian mechanics to the solar system as a whole. Laplace
also was very proud to abandon God as an explanation for physics. It is sad that so many
people still accept the flawed logic of Laplace in this sense: God was not invented to ex-
plain things. More than that, why should there be one explanation for everything? Is it
not possible that God did something and physics explains how He did it? But, I believe in
God, so I guess that is why I differ with Laplace. Laplace also popularized one of the ear-
lier versions of the naturalist’s creation myth: he put forth the ”nebular hypothesis” which
basically says the solar system formed from a giant cloud of gas shrinking to form planets etc...

3. Jean D’Alembert(1717-1783) was one of the first people to think of time as a fourth dimension
in 1754. He also found interesting solutions to a variety of physical problems.

4. Joseph-Louis Lagrange(1736-1813) was a contemporary of Laplace, but in contrast did be-
lieve that God could and should have a place in explaining events in nature. He did agree
with D’Alembert. Lagrange’s work in physics combined the genius of Newton with the vari-
ational calculus pioneered by Euler to produce what is now known as Lagrangian mechanics.
Classical field theories are largely based on generalizations of Lagrange’s formalism. Lagrange
attempted to give a treatment of calculus free of fluxions in 1797. His fundamental assumption
was that all functions could be written as a power series. It’s interesting that this assumption
is still made in many contexts by modern authors as a method to get past difficulties. It
turns out not all functions are analytic, but honestly, not too many in my experience.

5. William Rowan Hamilton(1805-1865) quaternions and physics.

6. Leonhard Euler(1707-1783) was a prolific mathematician who spent the later years of his life
completely blind. However, his capacity to calculate without writing meant that blindness
was not so much of a hindrance to his work. His memory was apparently amazing, he com-
mitted to memory all the powers up to order 6 for the numbers from 1 to 100 just for the sake
of quizzing his grandchildren. His blindness is thought to stem from a period of over exertion
on some astronomical calculation. You can read more in the 1801 translation of Euler’s text
on algebra. It’s free to download as a pdf. In it you will find solutions to an impressive
array of algebra problems. For example, he shows how to solve quadric equations. Euler
did many of the things we find in modern texts. For example, Euler introduced notation for
the functions sine and cosine and presented the calculus of these trigonometric functions in
1739. He introduced the word ”function” in a sloppy way, more or less he said the function
was the formula of the function, an abuse of terminology we still advocate for convenience.
He studied double integrals and coordinate change. He found the fundamental equations of
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variational calculus through some, in retrospect, questionable methods. Early in life he was
tutored by Johann Bernoulli who recognized his genius and later the Bernoulli’s helped him
secure a position in the newly opened Russian school in St. Petersburg. Catherin Gsell was
married Euler in 1733 and in all they had 13 children.

7. Hermann Gunther Grassmann(1809-1877) in 1844 discovered exterior algebra. He put forth
an operation which satisfied the weird relation AB = −BA. Ok, admittedly this has little to
do with calculus. On the other hand, it was probably the earliest example of super math.

8. Jean Baptiste Joseph Fourier (1768-1830) introduces sums of sines and cosines to solve heat
diffusion problems in physics. These Fourier series helped bring new questions to analysis
that were only answered in the late 19-th century.

9. Carl Friedrich Gauss(1777-1855) did everything. Complex variable foundations, algebra, num-
ber theory, physics, noneuclidean geometry, ...

10. Bernhard Bolzano(1781-1848) independently discovered foundational ideas about continuity
similar to Cauchy’s.

11. Karl Weierstrauss(1815-1897) very popular teacher. Pushed forward theory of convergence of
functions by introducing concept of uniform convergence.

12. Niels Henrik Abel(1802-1829) proved that quintic equations could not be solved by radicals.
In other words, there is no quintic formula in the same sense that we know a quadratic for-
mula. His proof involved the permutation groups studied by Cauchy and also Lagrange.

13. Evariste Galois(1811-1832) found methods which said which quintic equations allowed solu-
tions by radicals and which did not. Galois’ work was so deep that we still only typically
cover it in the second semester of abstract algebra.

14. Camille Jordan(1838-1922) wrote the first book on Galois theory. Did foundational work in
linear algebra and helped launch the imaginations of Klein and Lie. Developed a classification
of matrices which we now call the Jordan-form-decomposition.

15. Augustin-Louis Cauchy(1789-1857) permutation groups, introduced term ”determinant” and
wrote the foundational work on the topic in 1815. Also, found early example of eigenvalues
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and vectors for 2×2 system. In about 1820 showed Lagrange’s approach was based on an as-
sumption which was not reasonable for some functions. In 1823 introduced limits, continuity
and much of what we will study early in this course. In complex variables he proved useful
theorems about complex integration.

16. Arthur Cayley(1821-1895) foundations of group theory, theory of determinants. Beginning
work in linear algebra. In 1858, promoted notation for matrix in terms of single letter.

17. Adrien Marie Legendgre(1752-1833) wrote understandable treatment for the method of least
squares in 1805. In 1809 Gauss claimed to have invented it himself and have used it since
1795. Not surprisingly, Legendre was not happy about this. From what I read in Katz’ text
it’s not so easy to really pin down who first thought of least squares.

18. Kronecker(1823-1891) fundamental theorem of finite Abelian groups. Not a fan of Cantor’s
ideas about infinite sets.

19. George Green(1793-1841) found and published in 1828 what Russians classically called Os-
trogradsky’s theorem.

20. George Stokes(1819-1903) generalization of Green/Ostrogradsky theorem.

21. Mikhail Ostrogradsky(1801-1861) found and proved in 1826 what we usually call Green’s the-
orem.

22. James Clerk Maxwell(1831-1901) used quaternionic notation, unified electricity and mag-
netism by adding a correction term, one of the greatest physicists of all time.

23. Georg Bernhard Riemann(1826-1866) complex variables, analysis, integration and noneu-
clidean geometry.

24. Nikolai Ivanovich Lobachevsky(1792-1856) noneuclidean geometry.

25. Janos Bolyai(1802-1860) noneuclidean geometry.

26. James Joseph Sylvester(1814-1897) coined the term ”matrix”.
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27. Richard Dedekind(1831-1916) ideals for abstract algebra and construction of real numbers
through what we now call Dedekind cuts.

28. Georg Frobenius(1849-1917) gave general proof of the Cayley Hamilton theorem. In 1878
wrote the book on matrix math.

29. Heaviside(1850-1925) popularized the vector notation.

I should mention my use of the word ”discovered” begs a philosophical question: is mathematics
discovered or created? Plato and his followers would emphatically claim it is discovered. They
believed in the existence of mathematical theorems and objects in some sort of metaphysical reality.
When we prove a theorem we merely find aspects of that reality. On the other hand, other philoso-
phers of mathematics emphatically state that math is merely a human invention. The critics of the
platonic school believe there is no world of platonic forms, instead, math is what we make of it.
Noneuclidean geometry is often held up as an apt example of the invention of math. Bolyai, Gauss,
Lobachetsky and Riemann turned the tide against the most simplistic form of platonic thought.
Many thinkers found the uniqueness of Euclidean geometry as evidence for the existence of math
outside the physical realm. From another perspective, mathematicians discovered Euclidean ge-
ometry because there was no other geometry to discover. However, Euclidean geometry was not
unique or even necessary to model the world. Euclidean geometry had such an elevated status
in the minds of mathematicians that Gauss actually held back his work in the discovery for fear
of being critized by his small-minded peers. It didn’t help that famous philosopher Kant offered
”proofs” that only Euclidean geometry could be conceived in the mind of man.

Well, Kant was dead wrong. Riemann gave us the framework to create literally thousands of dif-
ferent geometries. I guess the nail in the coffin of the Euclidean-only crowd must have been when
Hilbert proved through careful arguments that consistency of Euclidean geometry was equivalent to
consistency of a certain noneuclidean geometry. That means both Euclidean geometry and noneu-
clidean geometry are reasonable or both are not. But, does this disprove Platonic philosophy of
math? Not really. The world of platonic ideals just got a little bigger. Personally, I think the
question of whether math is created or discovered is wrong. But, I’ll leave it at that for here.

Remark 1.5.1.

I’m not a math historian. But, I do like math history and I’m trying to learn more. This chapter is
in part just an exercise towards that end. I don’t expect you study this, or even read it necessarily.
Read it if you wish, ignore it if you want. I will likely talk about part of this the first day of class.
What follows from here is much more serious.
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1.6 a short overview of calculus in basic physics

I’ll speak to what I know a little about.

1. Newtonian Mechanics is based on Newton’s Second Law which is stated in terms of a time derivative
of three functions. We use vector notation to say it succinctly as

d~P

dt
= ~Fnet

where ~P is the momentum and ~Fnet is the force applied.

2. Lagrangian Mechanics is the proper way of stating Newtonian mechanics. It centers its focus
on energy and conserved quantities. It is mathematically equivalent to Newtonian Mechanics for
some systems. The fundamental equations are called the Euler Lagrange equations they follow from
Hamilton’s principle of least action δS = δ

∫
L dt = 0,

d

dt

[
∂L

∂ẏ

]
=
∂L

∂y
.

Lagrangian mechanics allows you to derive equations of physics in all sorts of curvy geometries. Ge-
ometric constraints are easily implemented by Lagrange multipliers. In any event, the mathematics
here is integration, differentiation and to see the big picture variational calculus (I sometimes cover
variational calculus in the Advanced Calculus course Math 332)

3. Electricity and Magnetism boils down to solving Maxwell’s equations subject to various boundary
conditions:

∇ · ~B = 0, ∇ · ~E =
ρ

εo
, ∇× ~B = µo ~J − µoεo

∂ ~E

∂t
∇× ~E = −∂

~B

∂t
.

Again, the mathematics here is calculus of several variables and vector notations. In other words, the
mathematics of electromagnetism is vector calculus.

4. Special Relativity also uses vector calculus. However, linear algebra is really needed to properly
understand the general structure of Lorentz transformations. Mathematically this is actually not so
far removed from electromagnetism. In fact, electromagnetism as discovered by Maxwell around 1860
naturally included Einstein’s special relativity. In relativitic coordinate free differential form language
Maxwell’s equations are simply stated as

dF = 0, d ∗ F = ∗J.

Newtonian mechanics is inconsistent with these equations thus Einstein’s theory was inevitable.

5. General Relativity uses calculus on manifolds. A manifold is a curved surface which allows for
calculus in local coordinates. The geometry of the manifold encodes the influence of gravity and
conversely the presence of mass curves space and time.

6. Quantum Mechanics based on Schrodinger’s equation which is a partial differential equation (much
like Maxwell’s equations) governing a complex wave function. Alternatively, quantum mechanics can
be formulated through the path integral formalism as championed by Richard Feynman.
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7. Quantum Field Theory is used to frame modern physics. The mathematics is not entirely under-
stood. However, Lie groups, Lie algebras, supermanifolds, jet-bundles, algebraic geometry are likely
to be part of the correct mathematical context. Physicists will say this is done, but mathematicians
do not in general agree. To understand quantum field theory one needs to master calculus, differential
equations and more generally develop an ability to conquer very long calculations.

I speak of basic physics simply to illustrate how correct Galileo was when he said that mathemtatics was the
langauge of nature. In fact, all modern technical fields in one way or another have calculus-based models at
their core. This is why you are expected to take calculus in a proper university education.
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Chapter 2

foundations of mathematics

2.1 set theory

A set is a collection of objects called elements. We denote the sentence ”x is an element of S” by the
short-hand symbolic sentence; ”x ∈ S”. The sentence ”x ∈ S” can also be read ”x is in S”. A common
notation to characterize the elements of a set is simply to list the elements: for example, S = {A,B,C}
means that S is a set which contains the objects A,B and C. The ordering of the elements is not special for
a general set, this means S = {B,A,C} = {C,A,B} etc... Often it is difficult or impossible to list all the
elements is a set. In such a case we may be able to use set-builder notation to define a set.

S = {x | x has property P }.

For example, the open interval (1,∞) = {x | x ∈ R, x > 1}. We may also use the equivalent notation
(1,∞) = {x ∈ R | x > 1}. The set with no elements is called the empty set and it is denoted by {} or ∅.
We say that two sets S and T are equal when they have identical elements, this is what S = T is meant to
denote when S and T are sets.

Definition 2.1.1. subset

We say S is a subset of T and denote S ⊆ T if for each s ∈ S we can show s ∈ T .

Notice that set-equality can be conveniently characterized by the concept of a subset. Think about it: S = T
means that S ⊆ T and T ⊆ S.

Definition 2.1.2. union, intersection and difference of sets

Let S and T be sets,

S ∪ T = {x | x ∈ S or x ∈ T} S ∩ T = {x | x ∈ S and x ∈ T} S − T = {s ∈ S | s /∈ T}

Set theory is a deep and interesting subject, however we will conclude our discussion here.

21
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2.2 numbers

Real numbers can be constructed from set theory and about a semester of mathematics. We will accept the
following as axioms1

Definition 2.2.1. real numbers

The set of real numbers is denoted R and is defined by the following axioms:

(A1) addition commutes; a+ b = b+ a for all a, b ∈ R.

(A2) addition is associative; (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R.

(A3) zero is additive identity; a+ 0 = 0 + a = a for all a ∈ R.

(A4) additive inverses; for each a ∈ R there exists −a ∈ R and a+ (−a) = 0.

(A5) multiplication commutes; ab = ba for all a, b ∈ R.

(A6) multiplication is associative; (ab)c = a(bc) for all a, b, c ∈ R.

(A7) one is multiplicative identity; a1 = a for all a ∈ R.

(A8) multiplicative inverses for nonzero elements;
for each a 6= 0 ∈ R there exists 1

a ∈ R and a 1
a = 1.

(A9) distributive properties; a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

(A10) totally ordered field; for a, b ∈ R:

(i) antisymmetry; if a ≤ b and b ≤ a then a = b.

(ii) transitivity; if a ≤ b and b ≤ c then a ≤ c.
(iii) totality; a ≤ b or b ≤ a

(A11) least upper bound property: every nonempty subset of R that has an upper bound, has a
least upper bound. This makes the real numbers complete.

Modulo A11 and some math jargon this should all be old news. An upper bound for a set S ⊆ R is a
number M ∈ R such that M > s for all s ∈ S. Similarly a lower bound on S is a number m ∈ R such
that m < s for all s ∈ S. If a set S is bounded above and below then the set is said to be bounded. For
example, the open set (a, b) is bounded above by b and it is bounded below by a. In contrast, rays such as
(0,∞) are not bounded above. Closed intervals contain their least upper bound and greatest lower bound.
The bounds for an open interval are outside the set.

1an axiom is a basic belief which cannot be further reduced in the conversation at hand. If you’d like to see a
construction of the real numbers from other math, see Ramanujan and Thomas’ Intermediate Analysis which has the
construction both from the so-called Dedekind cut technique and the Cauchy-class construction.
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Definition 2.2.2. standard subsets of real numbers

• natural numbers (positive integers); N = {1, 2, 3, . . . }.

• integers; Z = {. . . ,−2,−1, 0, 1, 2, . . . }. Note, Z>0 = N.

• non-negative integers; Z≥0 = {0, 1, 2, . . . } = N ∪ {0}.

• negative integers; Z<0 = {−1,−2,−3, . . . } = −N.

• rational numbers; Q = {pq | p, q ∈ Z, q 6= 0}.

• irrational numbers; J = {x ∈ R | x /∈ Q}.

• open interval from a to b; (a, b) = {x|a < x < b}.

• half-open interval; (a, b] = {x | a < x ≤ b}. (oposed interval)

• half-open interval; [a, b) = {x | a ≤ x < b}. (clopen interval)

• closed interval; [a, b] = {x | a ≤ x ≤ b}.

The cartesian product of R and R gives us R2 = R× R = {(x, y) | x, y ∈ R}. In this context (x, y) is called
an ordered pair of real numbers. Notice that the notation (a, b) could refer to a point in R2 or it could
refer to a open interval. These are very different objects yet we use the same notation for both. The point
(a, b) ∈ R2 whereas the interval (a, b) ⊆ R. Question: is (4, 3) a point or an open interval? Why is there no
danger of ambiguity in this case?

The real numbers and rational numbers are examples of fields. A field is a set which satisfies axioms A1-A9.
In fact, both Q and R are ordered fields which means follow axioms A1-A10. However, the rational numbers
are not complete. To complete the rational numbers you have to throw in the irrational numbers which gives
the whole real number system. Beyond the real and rational fields we can consider the complex number
field.

Definition 2.2.3. complex numbers

C = {a+ ib | a, b ∈ R and i2 = −1}

The complex numbers are not ordered, however they are algebraically complete this means we can factor
any polynomial into linear factors with complex numbers. In contrast, the real numbers only allow us to
factor a polynomial into linear factors together with irreducible quadratic factors. For example, x2 + 1
cannot be factored over R but x2 + 1 = (x+ i)(x− i). The proof that the complex numbers are algebraically
complete was provided by Gauss in the nineteenth century. We often prove it in the complex variables (Math
331) course here at LU. We will find many occasions to use complex numbers in calculus and differential
equations. Like it or not real problems often have complex solutions. Take the quadratic formula as a prime
example of this phenomenon. The concept of a variable is so fundamental it bears mention at this juncture
(I already used this concept in the definition of R if you think about it):

Definition 2.2.4. variable

A real variable x is a symbol which is allowed to assume any value in R. A complex variable z
is a symbol which is allowed to assume any value in C.
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Other types of variables are interesting but these two are the primary types we’ll be interested in for this
semester. In addition, usually these variables are not entirely free. Typically a variable is restricted by some
equality or inequality. Another ubiqitous concept is the number line2. In the diagram below I picture
some of the standard intervals. We use solid bold dots to indicate the point is included in the set, whereas
an open dot indicates that point is excluded.

It is useful to catalogue the following properties of inequalities:

Theorem 2.2.5. properties of inequalities:

Let a, b, c, d ∈ R,

1. square of real number is non-negative; a2 ≥ 0,

2. square zero only if number is zero; a2 = 0 iff a = 0,

3. add or subtract from both sides at once; if a < b then a+ c < b+ c and a− c < b− c,

4. add inequalities; a < b and c < d implies a+ c < b+ d,

5. transitivity; a < b and b < c implies a < c,

6. if ab > 0 then a < b implies 1/a > 1/b.

The last statement ab > 0 is just a tricksy way of saying that a and b are either both positive or both
negative. This theorem can be proven from the axioms of the real numbers, but I will not offer those details
here. You should not be surprised to hear that a similar theorem also holds if we replace < with > or ≤
with ≥.

Definition 2.2.6. absolute value

The absolute value of a real number x is denoted |x| and is defined |x| =
√
x2. Notice this formula

is equivalent to the case-wise formula:

|x| =

{
x if x ≥ 0

−x if x ≤ 0

This distance between a, b ∈ R is denoted d(a, b) and it is defined by d = |b− a|.

2Rene’ Descartes popularized this concept in the early 17th century; the number line is the foundation of analytical
geometry. The fundamental idea in analytic geometry is that there is a 1-1 correspondence between lines and the
real numbers.
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We should recall that the square root function is by definition the positive root;
√
x ≥ 0. Therefore, we can

characterize a nonzero positive number by the equation x = |x| whereas a nonzero negative number x has
|x| = −x. It is useful to catalogue the following properties absolute values:

Theorem 2.2.7. properties of absolute value:

Let a, b, ε ∈ R with ε > 0,

1. absolute value is non-negative; |a| ≥ 0,

2. absolute value is zero only if number is zero; |a| = 0 iff a = 0,

3. absolute value of product is product of absolute values; |ab| = |a||b|,

4. bounded absolute value same as double inequality; |a| < ε ⇔ −ε < a < ε,

5. triangle inequalities ;

(i.) |a+ b| ≤ |a|+ |b| (ii.) |a− b| ≥ |a| − |b| (iii.)
∣∣|a| − |b|∣∣ ≤ |a− b|

Proof:
Item (1.) is immediately obvious from the definition |x| =

√
x2.

To prove (2.) consider that if a = 0 then clearly |0| =
√

02 = 0. Conversely,
√
a2 = 0 implies a = 0.

To prove (3.) note that |ab| =
√

(ab)2 =
√
a2b2 =

√
a2
√
b2 = |a||b|.

I leave (4.) for the reader to prove.
The proof of (5.) requires a bit more thought, I’ll prove part (i.) and leave (ii.) and (iii.) for the reader.
Notice that |a+ b|2 = (a+ b)2. Consider then

|a+ b|2 = (a+ b)2 = a2 + 2ab+ b2 = |a|2 + 2ab+ |b|2

To complete the proof of (4.) part (i.) we need to break into cases:

1. If a, b > 0 then |a| = a and |b| = b thus the equation above yields |a+b|2 = |a|2+2|a||b|+|b|2 = (|a|+|b|)2

hence |a+ b| = |a|+ |b|.

2. If both a, b < 0 then we have |a| = −a and |b| = −b thus 2ab = 2(−a)(−b) = 2|a||b| which gives us
that |a+ b|2 = (|a|+ |b|)2 which again yields |a+ b| = |a|+ |b|.

3. If a > 0 and b < 0 then 2ab = −2a(−b) = −2|a||b| therefore |a + b|2 = |a|2 − 2|a||b| + |b|2. Since
|a|, |b| > 0 it is certainly true that adding 4|a||b| to the r.h.s. of the equality gives the following
inequality, |a+ b|2 = |a|2−2|a||b|+ |b|2 < |a|2 + 2|a||b|+ |b|2 = (|a|+ |b|)2. Therefore, |a+ b| < |a|+ |b|.

4. If a < 0 and b > 0 then by the argument above with a↔ b shows |a+ b| < |a|+ |b|.

5. If either a = 0 or b = 0 then the (4.) is clearly true.

Thus |a+ b| ≤ |a|+ |b| for all possible cases hence the proposition is true3. �

3Note that in mathematics our standard for true and false is much stricter than other disciplines. When we ask
if something is true it is usually the case that we implicitly mean to ask ”is this true for all possible cases”. If we
wish to ask a question relative to a restricted set of cases then we are obligated to reduce the set of answers for the
question which is asked. This is often a source of confusion between professors and students. Typically I’ll answer
the question which was literally asked whether or not that was the intended question.
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It is probably useful to study the geometric significance of the theorem on absolute values. Note that
|x| = |x− 0| = d(x, 0) so the absolute value gives the distance to the origin. This makes (4.) easy to
understand: it simply says that if the distance of a to the origin is less than ε then the point a must reside
between −ε and ε.

Definition 2.2.8. neighborhoods

An open neighborhood centered at a with radius δ > 0 is denoted Bδ(a) where

Bδ(a) = {x ∈ R | d(a, x) < δ} = (a− δ, a+ δ).

An deleted open neighborhood centered at a with radius δ > 0 is denoted Bδ(a)o where

Bδ(a)o = {x ∈ R | 0 < d(a, x) < δ} = (a− δ, a) ∪ (a, a+ δ).

The concept of a deleted neighborhood will be central to the study of limits. 4

We would sometimes like to insist that a give set of real numbers has no holes. In other words, you can draw
the set as a connected line-segment or ray on the number line.

Definition 2.2.9. connected subsets of real numbers.

We say U ⊆ R is connected iff

U ∈ {R, (−∞, a), (a,∞), (−∞, a], [a,∞), [a, b], (a, b], [a, b), (a, b)}

for some a, b ∈ R where a < b.

The definition I gave above is rather clumsy, but I believe it should be readily understood by calculus
students5. Next, we sometimes need the concept of a boundary point. In a nut-shell a boundary point is a
point on the edge of a set.

Definition 2.2.10. boundary points.

We say p ∈ U ⊆ R is a boundary point of U iff every open nbhd. centered at p intersects points in
R− U and U . In other words, boundary points of U are positioned so that they are close to points
both inside and outside U . We denote the boundary of U by ∂U .

4I’m using a B for neighborhood because it matches a notation I’ll use later for studies of higher dimensional open
sets: generally, Bδ(a) = {x ∈ Rn | ||x− a|| < δ} is an open-ball of radius δ in n-dimensional space. Also, be warned
that the concept of a neighborhood varies from text to text. Other texts merely insist that a neighborhood of a is a
set N such that there exists a δ > 0 with Bδ(a) ⊆ N . I don’t believe we’ll need such sophistication in this course.

5Equivalently, you could say U is connected iff there do not exist U1, U2 such that U1 ∩ U2 = ∅ and U1 ∪ U2 = U .
A pair of sets like U1, U2 is called a separation of U .
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Notice that a boundary point of U need not be in U ; for example U = (0, 1] has ∂U = {0, 1} and 0 /∈ U . On
the other hand, it is possible for the whole set to be comprised of boundary points: ∂N = N. We can break
down any set of real numbers into two types of points:

1. boundary points

2. interior points

For example, [0, 1) = {0, 1} ∪ (0, 1). We have ∂[0, 1) = {0, 1} whereas int([0, 1) = (0, 1).

Definition 2.2.11. interior points.

Suppose U ⊂ R then we say p ∈ U is an interior point of U if there exists ε > 0 such that
Nε(p) ⊆ U . The set of all interior points of U is denoted int(U).

Note int(N) = ∅ whereas int(0, 1) = (0, 1). In contrast, ∂N = N and ∂(0, 1) = ∅. Finally, we have all the
terminology necessary to carefully define an open set:

Definition 2.2.12. open sets, closed sets.

We say U ⊆ R is an open set iff each point in U is an interior point. Likewise, we say U is a closed
set iff U = U ∪ ∂U .

A closed set contains all its boundary points whereas an open set contains only interior points.

Problems

Problem 2.2.1. Absolute value was defined by |x| =
√
x2 for x ∈ R. Use this definition to show that if

b 6= 0 then |a/b| = |a|/|b|.

Problem 2.2.2. Suppose x ∈ R and −2 < x ≤ 1. Find δ such that |x| < δ.

Problem 2.2.3. Write B3(0) ∪B2(3) as an interval of real numbers.

Problem 2.2.4. Let S = {x ∈ R | − 1 < x < 4}. Find ε and a such that Bε(a) = S.

Problem 2.2.5. Suppose T = (1, 2) ∪ (2, 3). Find δ and a such that Bδ(a)o = T .
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2.3 algebra

The fundamental rules of algebra were revealed in our definition of real numbers. Factoring follows from the
fact that if a, b ∈ R and ab = 0 then a = 0 or b = 0. The factor theorem provides a simple test to check if a
factor appears in a particular polynomial.

Theorem 2.3.1. factor theorem

If p(x) is a polynomial and p(r) = 0 then there is another polynomial q(x) such that p(x) =
(x− r)q(x). The polynomials could have real or complex coefficients and the root r could either be
real or complex.

Actually, the theorem holds in a context which is more general than just R or C but we only need the result
claimed above. I will not provide a proof of this theorem here.

Example 2.3.2. Suppose f(x) = x33 +x2−1, is (x−1) a factor of f? Well, observe that f(1) = 1+1−1 =
1 6= 0 hence (x − 1) is not a factor of f(x). In contrast, if g(x) = x33 + x2 − 2 then we could calculate
that g(1) = 1 + 1 − 2 = 0 so the factor theorem tells us that we can write g(x) = (x − 1)h(x) where
h(x) = x32 + · · ·+ 2. If you really want to you could use long division to calculate that:

g(x) = (x− 1)

(
x32 + x31 + x30 + x29 + x28 + x27 + x26 + x25 + x24 + x23

+ x22 + x21 + x20 + x19 + x18 + x17 + x16 + x15 + x14 + x13

+ x12 + x11 + x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + 2x+ 2

)
Theorem 2.3.3. fundamental theorem of algebra

If p(x) is a polynomial with real coefficients then it can be factored into a product of linear and
irreducible quadratic factors. Each irreducible quadratic factor can be split into a pair of linear
factors corresponding to a conjugate pair of complex zeros to the equation p(x) = 0.

Example 2.3.4.

p(x) = x4 − 1 = (x2 + 1)(x2 − 1) = (x2 + 1)︸ ︷︷ ︸
irred. quad.

(x+ 1)(x− 1)︸ ︷︷ ︸
linear

= (x+ i)(x− i)(x+ 1)(x− 1)︸ ︷︷ ︸
complex linear factorization

Example 2.3.5.

p(x) = x2 + 4x+ 13 = (x+ 2)2 + 9︸ ︷︷ ︸
irred. quad

= (x+ 2)2 − (3i)2︸ ︷︷ ︸
difference of squares

= (x+ 2− 3i)(x+ 2 + 3i)︸ ︷︷ ︸
conjugate factors

Example 2.3.6.
p(x) = x4 + 4x3 + 3x2 = x2(x2 + 4x+ 3) = x2(x+ 1)(x+ 3)

There is more to say, but this will suffice for the moment.

Problems

Problem 2.3.1. Suppose f(x) is a second-order polynomial with zeros of 1 and 2. If f(0) = 3 then what is
the standard form for f(x)? (recall f(x) = Ax2 +Bx+ C is the so-called standard-form)

Problem 2.3.2. Suppose r = 2 + 3i is a complex zero for the second-order polynomial with real coefficients
f(x). Find the standard-form for f(x) (there may be a whole family of answers).
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2.4 analytical geometry

The difference between analytic geometry and the formal geometry of Euclid is that analytic geometry is
based primarily on numbers and algebra whereas the method of Euclid involves mainly straight-edge and
compass constructions. Analytic geometry is far more useful. As a concrete example, it is impossible to
trisect an angle in general using constructive methods however, in analytic geometry trisecting an angle is
as easy as dividing by three and using your handy-dandy protractor. Of course the history and beauty of
Euclidean geometry ought not be neglected, you’ll see the beauty in our course on modern geometry here
at LU. Also, abstract algebra has much to say about the non-existence of certain constructions in Euclidean
geometry, take Math 422 to see about that.

The geometry of the plane is easily described by various operations on the set R2 = R×R = {(x, y) | x, y ∈ R}.
If p = (a, b) ∈ R2 then we say that the x-coordinate of p is a and the y-coordinate of p is b. Typically we
call the y direction the vertical and the x direction the horizontal. If we are given two points, say p = (a1, a2)
and q = (b1, b2) then the distance between them is given by the distance formula

d(p, q) =
√

(b1 − a1)2 + (b2 − a2)2

Notice the distance to the origin to a point p = (x, y) is given by d(p, 0) =
√
x2 + y2, you can appreciate

the similarity to the distance in the one-dimensional case where d(x, 0) = |x| =
√
x2. We can also calculate

the midpoint of p, q ∈ R2 by simply calculating their average; m = 1
2 (p+ q). We define addition of points in

the natural manner: if p = (p1, p2) and q = (q1, q2) then p + q = (p1 + q1, p2 + q2) and multiplying by 1
2 is

likewise defined to mean 1
2 (p+ q) =

(
1
2 (p1 + q1), 1

2 (p2 + q2)
)

The angle between two rays or line segments is often of interest. The sine, cosine and tangent functions are
key tools in such analysis. A right triangle is one which has a right-angle at one corner (a right angle is
measured to be 90 degrees or π/2 radians.) I have provided a quick reminder of how sine, cosine and tangent
are defined in for a right triangle in the diagram above. This concludes our short tour of analytic geometry.
We will find occasion to use these tools throughout this course.

Problems

Problem 2.4.1. Let A = (1,−1), B = (3, 4) and C = (−1, 2) be the vertices of a triangle ABC. Find the
lengths of AB,BC and CA and then calculate the interior angles. (hint: invent right-triangles where helpful)
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2.5 functions

The term function is about a third of a milennia old. It was first used by Leibniz in about 1700. More
recently the term function has gained a rigorous and precise meaning. To say f is a function from A to
B means that for each a ∈ A the function f assigns a particular element b ∈ B. We denote this by saying
that f(a) = b or we can equivalently denote a 7→ f(a).

Definition 2.5.1. function

We say f is a function from A to B if f(a) ∈ B for each a ∈ A and the value f(a) is a single
value. We denote f : A→ B in this case and we say that A = domain(f) and B = codomain(f).
Furthermore, we say that f is an B-valued function of A. If A = B then we may say that f is a
function on A. If A ⊆ R then f is said to be a function of a real variable. If B ⊆ R then f is
said to be a real-valued function. If B ⊂ C then f is said to be a complex-valued function.

Often it is convenient to put the subset notation together with the function notation: f : U ⊆ R −→ V ⊆ R
means that f : U → V and U ⊆ R and V ⊆ R. Additionally, it is a common abuse of terminology to refer
to the formula of the function as the function: for instance consider f : R→ R with f(x) = x2:

1. ”the function is f ”

2. ”the function is x2 ”

usually there is no danger of confusion provided we all understand that the function actually is a rule which
maps points from one set to another.

Definition 2.5.2. implicit domain for function defined by formula

If only a formula f(x) is given then it is customary to choose domain(f) to be the largest set of
values for which the formula f(x) is well-defined.

Let f(x) =
√
x, this function has implicit domain dom(f) = [0,∞) since otherwise the formula would not

yield a real number. Naturally we can always choose a smaller domain by an additional statement; g(x) =
√
x

with dom(g) = [0, 1] has same formula as f but obviously the domain is smaller. One application that might
make you choose the domain [0, 1] would be if x was a probability.

Definition 2.5.3. function equality

We say two functions f and g are equal iff dom(f) = dom(g) and for all x ∈ dom(f) we have
f(x) = g(x).

If two functions disagree at even just one point then we say they are not equal. For example, f(x) = x
and g(x) = x2/x are not the same function since they do not share the same domain, dom(f) = R whereas
dom(g) = R − {0} = (−∞, 0) ∪ (0,∞). If we define h : (−∞, 0) ∪ (0,∞) → R by h(x) = x then it is true
that g = h since g(x) = x2/x = x for each x 6= 0.
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Definition 2.5.4. how functions act on sets.

Suppose f is a function and S ⊆ dom(f) then we define the image of S under f as follows:

f(S) = {f(x) | x ∈ S}.

Likewise, if T ⊆ codomain(f) then we define the inverse image of T under f as follows:

f−1(T ) = {x ∈ dom(f) | f(x) ∈ T}.

In the case T is a set containing a single element the inverse image is called a fiber.

Example 2.5.5. Suppose f(x) = 3x+ 2. Observe that:

f([0, 2]) = {3x+ 2 | x ∈ [0, 2]} = [2, 8].

On the other hand, f−1([0, 2]) is the set of x ∈ R such that

3x+ 2 ∈ [0, 2] ⇒ 0 ≤ 3x+ 2 ≤ 2 ⇒ −2 ≤ 3x ≤ 0 ⇒ −2/3 ≤ x ≤ 0.

We find f−1([0, 2]) = [−2/3, 0].

The image of the domain is of particular importance. We give it a special name:

Definition 2.5.6. range of a function

Suppose f : U ⊆ R −→ V ⊆ R then

range(f) = f(dom(f)) = {f(x) | x ∈ dom(f)}.

This definition simply says the range is the set of possible outputs for f . Notice that the codomain and the
range are not necessarily the same set. What we can say is that the range is the smallest possible codomain
for a given domain and formula. We also ought to recall the definition of the graph of a function6:

Definition 2.5.7. graph of a function

Suppose f : U ⊆ R −→ V ⊆ R then

graph(f) = {(x, y) ∈ R2 | x ∈ dom(f) and y = f(x)}

Observe that the graph of a function is severely limited in the possible shapes it can assume. The vertical
line test states that if you draw a vertical line through the graph then it may hit at most one point on the
graph of a function. We can also discuss graphs of equations. The graph of x2 + y2 = 1 is the unit-circle,
clearly it fails the vertical line test and so we can conclude it is not the graph of a single function7.

6I give the definition for real-valued functions of a real variable, but the concept of a graph is much more general
than this.

7 in fact it can be described as x = cos(t) and y = sin(t) for 0 ≤ t ≤ 2π this is a parametrization of the circle.
Parametric curves provide a better geometric framework, we will use them at times.
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Generally the graph of an equation can be most anything you can think of. Consider,

(x− 4)(y − 3)(x2 + y2 − 1)(x2 + 3xy + 4y2 − 8) = 0

has graph as follows:

Clearly this fails the vertical line test8.

Sometimes a function may be defined by a graph. A graph is simply a visual representation of a table of
values. If the point (a, b) is on the graph then that tells us that f(a) = b. This is good news since we may
not want to write the formula for certain functions, for example:

Finding the domain and range of a given function requires thinking. Tools you should already have at
your disposal are sign-charts, graphs of polynomials and rational functions without the help of a graphing
calculator.9

Given two functions f and g we can create new functions by adding, subtracting, dividing or multiplying.

Definition 2.5.8. new functions from old.

8can you see how I made the equation work? If you understand my silly trick you can build a lot of pictures with
equations.

9 You should be able to solve the inequality x2 + 5x + 6 > 0. You should also be able to graph those basic
transcendental functions such as sine, cosine and the exponential function. Please understand the purpose of this
chapter is to remind and reinforce. If you need more examples then you should come to office hours or perhaps review
your precalculus text. That said, I will give a few examples which illustrate the main algebraic techniques for algebra
and graphing in the next section. If you need a review of long-division, sign-charts and so forth you could read my
college algebra notes. They’re easily downloaded from my website at your convenience.



2.5. FUNCTIONS 33

These formulas go to show that functions are a lot like numbers, we can add, subtract, multiply and even
divide functions and the result will be a function. Functions are different than numbers of course, for
example, I’m not sure what the analogue for the following would be in terms of numbers

Definition 2.5.9. composite function

Suppose g : U → V and f : W → U then we define g ◦ f : W → V by (g ◦ f)(x) = g(f(x))
for each x ∈ W . If no domains are explicitly given for f and g then it is customary to take
dom(g ◦ f) = dom(f) ∩ {x | f(x) ∈ dom(g)}

Here’s a picture to explain why we may need to exclude part of the domain of the inside function. Suppose
the green regions are connected by the mapping f . The green part of the domain of f can be inlcuded in
the domain of g ◦ f since it maps to a subset of the domain of g.

Example 2.5.10. Consider g(x) = x2 and f(x) =
√
x− 1. The domain of g is R however the domain of

f ◦ g is necessarily smaller. We need g(x)− 1 ≥ 0 for g(x) ∈ dom(f). That is, x2 − 1 = (x− 1)(x+ 1) ≥ 0.
This inequality has solution x ≤ −1 or x ≥ 1 therefore, dom(f ◦ g) = (−∞,−1] ∪ [1,∞). In this case, the
natural domain of the formula (f ◦ g)(x) =

√
x2 − 1 is also (−∞,−1] ∪ [1,∞).

Example 2.5.11. Suppose g(x) = 1
x and f(x) = 1

x . Calculate that (f ◦ g)(x) = f(1/x) = 1
1
x

= x. The

domain suggested by (f ◦ g)(x) = x is R, however that is incorrect. The true domain is R − {0}, the
simplification 1

1
x

= x fails to be correct when x = 0. Moral of story? Be careful when you simplify to keep

track of cases that are excluded from the algebraic steps you perform.

Definition 2.5.12. even or odd functions

1. f : U ⊆ R→ R is even iff f(−x) = f(x) for all −x, x ∈ U ,

2. f : U ⊆ R→ R is odd iff f(−x) = −f(x) for all −x, x ∈ U ,

Some functions are even, for example f(x) = x2 (see how it mirrors the y-axis). Other functions are odd,
for example g(x) = x (see how it reflects through the origin) . We can also have functions which are neither
even nor odd, for example h(x) = f(x) + g(x) = x+ x2 (no simple symmetry evident) .
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Perhaps you’ll be surprised to hear that any function defined on a domain which is symmetric about zero
(which means that if x ∈ dom(f) then −x ∈ dom(f) for each x ∈ dom(f)) can be written as a sum of an
even function and an odd function. Don’t believe it? Consider:

f(x) = 1
2 [f(x) + f(−x)]︸ ︷︷ ︸

even

+ 1
2 [f(x)− f(−x)]︸ ︷︷ ︸

odd

you can verify that the terms are correctly labeled, the even part is an even function and the odd part is an
odd function. All I did was to add zero and use 1 = 1

2 + 1
2 .

Problems

Problem 2.5.1. Let f(x) = 2x− 1 find f([−3,−2]) and f−1([1, 2])

Problem 2.5.2. Let f(x) = x2 + 3. Write the graph(f) as a set of ordered pairs using the set-builder
notation.

Problem 2.5.3. Find the natural domain of g ◦ f given g(x) = 1
x−1 and f(x) =

√
x+ 3.

Problem 2.5.4. Find the natural domain of g ◦ f given g(x) = 1
2x−1 and f(x) = 3x2 + 1.

Problem 2.5.5. Show that f(x) = 1/x is an odd function. State dom(f).

Problem 2.5.6. Show that f(x) = 1/(x2 − 1) is an even function. State dom(f).

Problem 2.5.7. Let dom(f) be symmetric about zero. Let g(x) = 1
2 [f(x) + f(−x)]. Show g is even.
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2.6 graphing and inequalities

The logical justification for the techniques used in this section is provided later in this course when we
study continuity. It turns out that a theorem due to a 19-th century Jesuit priest named Bolzano justifies
carefully how a function may change signs from positive to negative. Long story short, if we are dealing with
a polynomial or a rational function then the sign changes can only occur at vertical asymptotes, holes in
the graph or simply a zero of the function. We call numbers where the function is either zero or undefined
algebraic critical numbers.

Definition 2.6.1. algebraic critical numbers.

Suppose f : dom(f) ⊆ R → R is a function then we say c ∈ dom(f) ∪ ∂(dom(f)) is an algebraic
critical number iff either c /∈ dom(f) or f(c) = 0.

I have added the qualifier ”algebraic” to distinguish this concept from a later technical meaning we ascribe
to the term critical point10.

The guiding principle of this section is that a function can only change signs at algebraic critical numbers.
Therefore, if we draw a number line with the algebraic critical points labeled and draw little ±’s to indicate
the sign of the function then we can roughly sketch the function and also quickly read solutions to inequalities.
That’s the big idea, let’s see how it is implemented.

Example 2.6.2. Suppose f(x) = x2 + x − 6. Find solution of x2 + x − 6 ≥ 0. Notice that we can factor
f(x) = (x+ 3)(x− 2) thus f(−3) = 0 and f(2) = 0. Pick tests points to the left and right of each algebraic
critical number and evaluate the function. In this case, easy choices are

f(−4) = (−1)(−6) = 6, f(0) = −6, f(3) = (6)(1) = 6

hence the following sign chart is derived:

We find x2 + x − 6 ≥ 0 if x ∈ (−∞,−3] ∪ [2,∞). As an additional application of this sign chart, suppose
you were asked to find the domain of g(x) which is defined implicitly by the following formula:

g(x) =
1√

6− x− x2
.

We would require x ∈ dom(g) iff 6−x−x2 > 0. But, this is the same as stating x ∈ dom(g) iff x2 +x−6 < 0
hence, by the sign chart, dom(g) = (−3, 2).

The other way to attack such problems is to tackle the nonlinear inequalities one case at a time until the
possibilities are exhausted. For some of you who are gifted in that vein of thought I do not discourage your
line of thinking. However, I believe the sign-chart will aid understanding for many. In particular, it helps
me sort things out when the expression is less than trivial. Notice that we don’t even have to graph the
function. The sign chart captures all the data we need for the solution of inequalities.

10critical numbers are algebraic critical numbers of the derivative function, but you’re not allowed to know that
just yet... oops.
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Example 2.6.3. Solve the following inequality:

(x2 + 3x)(x2 + 4x+ 5)

x2 − 2x
≤ 0.

We define f(x) = (x2+3x)(x2+4x+5)
x2−2x and factor the formula as much as possible,

f(x) =
x(x+ 3)((x+ 2)2 + 1)

x(x− 2)
=

(x+ 3)((x+ 2)2 + 1)

x− 2

for x 6= 0. The quadratic factor is irreducible. I completed the square to make it explicitly clear that the
quadratic could not be factored 11. We have three algebraic critical numbers: c = −3, 0, 2. Again, pick test
points to the left and right of each algebraic critical number,

f(−4) =
(−4 + 3)((−4 + 2)2 + 1)

−4− 2
> 0

f(−2) =
(−2 + 3)((−2 + 2)2 + 1)

−2− 2
< 0

f(1) =
(1 + 3)((1 + 2)2 + 1)

1− 2
< 0

f(3) =
(3 + 3)((3 + 2)2 + 1)

3− 2
> 0

Hence,

From which we deduce12 for x ∈ [3, 0) ∪ (0, 2]:

(x2 + 3x)(x2 + 4x+ 5)

x2 − 2x
≤ 0.

11completing the square on a quadratic for numerically reasonable quadratics is almost always the fastest way
to find the roots in the complex case. Given (x + 2)2 + 1 = 0 I can read the solution is x = −2 ± i without
further calculation. This is much faster than the quadratic formula. If the quadratic was factorable over R then
completing the square gives a minus instead of a plus. For example, x2 + 6x + 5 = (x + 3)2 − 4. Then I can read
the solution is x = −3 ± 2 = −1,−5. Obviously factoring is also a good way to solve in the case of real zeros;
x2 + 6x+ 5 = (x+ 1)(x+ 5) = 0 implies x = −1,−5.

12Notice we had to exclude x = 0 since f(0) is undefined.
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Example 2.6.4. Find the domain of g(x) =
√
−(x+ 3)(x− 3)2. Note that we need −(x+ 3)(x− 3)2 ≥ 0.

Define f(x) = −(x+ 3)(x− 3)2 and observe c = −3, 3 are algebraic critical numbers. Observe that f(−4) =
1 > 0, f(0) = −27 < 0 and f(4) = −7 < 0 hence the sign chart for f is:

We find that −(x+ 3)(x− 3)2 ≥ 0 for x ∈ (−∞,−3] ∪ {3}. Therefore, dom(g) = (−∞,−3] ∪ {3}.

Problems

Problem 2.6.1. Let f(x) = x3 + 1 find f([−3,−2]) and f−1([1, 2]).

Problem 2.6.2. Let g(x) = x4 − 1 find f−1([0,∞)).
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2.7 local inverses

Notice that the concepts of even and odd are global concepts for a given function, they apply to the whole
domain of the function. Increasing and decreasing are local concepts. A function might increase on one
interval and decrease on another. For example, the function f(x) = 1

x2 decreases on (0,∞) and it increases
on (−∞, 0). Of course, a function could increase on all of R, for example: the cubic function g(x) = x3 is
increasing everywhere.

Definition 2.7.1. increasing or decreasing

1. f : U ⊆ R→ R is increasing on I ⊆ U iff for all a, b ∈ I with a < b we can show f(a) ≤ f(b),

2. f : U ⊆ R → R is strictly increasing on I ⊆ U iff for all a, b ∈ I with a < b we can show
f(a) < f(b),

3. f : U ⊆ R→ R is decreasing on I ⊆ U iff for all a, b ∈ I with a < b we can show f(a) ≥ f(b),

4. f : U ⊆ R → R is strictly decreasing on I ⊆ U iff for all a, b ∈ I with a < b we can show
f(a) > f(b),

If f is either increasing, strictly increasing, decreasing or strictly decreasing on I = dom(f) then
we say that f is respectively increasing, strictly increasing, decreasing or strictly decreasing. If f is
either increasing or decreasing then we say f is monotonic.

If f(x) = c for all x ∈ I then we say f is constant on I. In view of our definition a constant function is
both increasing and decreasing.

Notice that increasing and decreasing are most meaningful with respect to some connected interval I. Con-
nected means that the interval can be written as either an open, closed, clopen or oposed possibly infi-
nite interval. A connected interval on the number line is one for which we can sketch the whole interval
without ever lifting our pencil. A singleton is a set containing just one element, if you take a singleton
I = {a} ⊆ dom(f) then the we find that f is both increasing and decreasing on I (the conditions are trivially
satisfied).

We will later learn how to use calculus to characterize if a function increases or decreases, for now all we can
do is use graphing or argument from explicit inequalities. One thing worth noticing is that if a function is
strictly increasing or decreasing on a connected interval then it will pass a horizontal line test. If you draw
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a horizontal line then it will hit at most one point in the graph. The cubic function passes the horizontal
line test. The volcano graph does not have a connected domain, but if you just look at the right or left half
of f(x) = 1/x2 then those parts separately pass the test. If a piece of a function can pass a horizontal line
test then we’d like to have some term to quantify that behavior. For our future reference I define precisely
what I mean by ”part” of a function.

Definition 2.7.2. restriction and extension

Let f : U ⊆ R→ R be a function the we say that g is the restriction of f to V ⊆ U iff g : V → R
and g(x) = f(x) for all x ∈ V . We use the notation g = f |V to indicate that g is the restriction of
f to the set V . Generally, if g is a restriction of f then we say that f is an extension of g.

A restriction is just a part of a function. An extension makes a given function bigger. If the restriction of a
function to V passes the horizontal line test then that function is said to be injective on V .

Definition 2.7.3. injective or 1-1

Let f be a function, if U ⊆ dom(f) and for all a, b ∈ U we find f(a) = f(b) implies a = b then
we say f is injective on U . If f is injective on its domain then we say f is injective. The terms
one-to-one or 1-1 are synonymous with injective.

When a function is injective on U we can prove that there is an inverse function for the restriction of the
function to U . If we define f−1(y) = x such that f(x) = y then this provides a single-valued inverse
function. Why? Suppose that f−1(y) = x1 and f−1(y) = x2 then by our definition f(x1) = f(x2) = y
hence by the 1-1 property x1 = x2. This little argument goes to show that the inverse function below is
well-defined. We say a function is well-defined if it is single-valued and it has a rule which makes the output
unambiguous.

Definition 2.7.4. local inverse

We say that f has a local inverse f−1 on U ⊆ dom(f) if it satisfies the following two equations,

f−1(f(x)) = x

for each x ∈ U , and
f(f−1(y) = y

for each y ∈ f(U) where f(U) = {y | ∃x ∈ U s.t. f(x) = y}. If the set U = dom(f) then we say
that f−1 is a global inverse of f and the function f is said to be invertible.

It does seem geometrically obvious that if the restriction of a function passes the horizontal line test with
respect to a connected set then the same function ought to be either strictly decreasing or strictly increasing
on that set.
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Proposition 2.7.5. if f is strictly increasing or decreasing then f is 1-1.

Suppose f is either strictly increasing or strictly decreasing on U ⊆ R then f is injective on U .

Proof: assume that f is strictly increasing on U then for all x, y ∈ U such that x < y we have that
f(x) < f(y). Let a, b ∈ U and suppose f(a) = f(b) ( we seek to show a = b since that proves that f is injec-
tive on U). If a = b then we’re done. Suppose that a < b then f(a) < f(b) which contradicts f(a) = f(b).
Likewise, if b < a then f(b) < f(a) which contradicts f(a) = f(b). Therefore, since otherwise we find a con-
tradiction, the only possibility is that a = b. Thus f is 1-1 on U . If f is decreasing then the proof is similar. �

I would like to offer a converse to this proposition. If a function is 1 − 1 then it is either increasing or

decreasing, however, there are counter-examples. For example, f(x) =


x 0 ≤ x ≤ 1,

−x 1 < x ≤ 2

x 2 < x ≤ 3

is injective but is

neither increasing nor decreasing on [0, 3]. Here is a graph of this funny function:

If we wish to obtain a converse to the proposition then we will need to add additional hypothesis to avoid
the counter-examples like the one offered above.

Proposition 2.7.6. inverse functions also increase or decrease.

Suppose f : U → V is either strictly increasing or strictly decreasing on U ⊆ R then f−1 : V → U
is likewise either strictly increasing or decreasing on V .

Proof: suppose f : U → V is strictly increasing with inverse f−1 : V → U . Suppose a, b ∈ V such that
a < b and suppose f−1(a) = x and f−1(b) = y. There exist three possibilities:

1. f−1(a) = f−1(b) which implies f(f−1(a)) = f(f−1(b)) thus a = b which contradicts our assumption
a < b.

2. f−1(a) > f−1(b) which implies f(f−1(a)) > f(f−1(b)) thus a > b which contradicts our assumption
a < b.

3. f−1(a) < f−1(b) which implies f(f−1(a)) < f(f−1(b)) thus a < b which is without contradiction of
our assumption a < b.

Therefore, we find for all a, b ∈ V , if a < b then f−1(a) < f−1(b) which proves f−1 is strictly increasing.
The proof for the strictly decreasing case is similar. �
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We now examine a number of examples to elaborate on the concept of a local inverse. We should see the
propositions above made manifest in each case.

Example 2.7.7. Consider f(x) = x2 with dom(f) = [−1, 1]. We can argue algebraically that this function
is not one-one since f(a) = f(b) gives a2 = b2 which implies a = ±b (we needed a = b to obtain injectivity).
Or observe that it fails the horizontal line test:

In contrast, the same formula with reduced domain [−1, 0] or [0, 1] will pass the horizontal line test,

So then what is the formula for the inverse functions? We need,

(i.) f−1(f(x)) = f−1(x2) = x (ii.) f(f−1(x)) = (f−1(x))2 = x

Notice that (ii.) gives f−1(x) = ±
√
x. Then substituting into (i.) yields: ±

√
x2 = x. But, recall that√

x2 = |x| so we can see that the two solutions are,

1. If x ≥ 0 then
√
x2 = x so we choose the + solution; f−1(x) =

√
x

2. If x ≤ 0 then
√
x2 = −x so we choose the - solution; f−1(x) = −

√
x

We find that the inverse of f(x) = x2 on [0, 1] is f−1(x) =
√
x and the inverse of f(x) = x2 on [−1, 0] is

f−1(x) = −
√
x. Notice that the graphs of inverses (blue) are symmetric about the line ( green ).
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Example 2.7.8. Let f(x) = cos(x). Recall the graph of the cosine function is:

note that f cannot have a global inverse since it is not 1-1. However, if we reduce the domain to [0, π] we
obtain a 1-1 function on that interval. I have graphed the local inverse in blue , and you can see that the
inverse is the reflection of the graph of cosine about the line y = x ( green ).

It should be understood that when we speak of inverse cosine we actually refer the local inverse for cosine
on the interval [0, π]. The domain of inverse cosine is [−1, 1] and the range is [0, π]. In principle one could
construct other inverses for cosine based on other intervals, the choice of is simply one of convention.

Example 2.7.9. Let f(x) = sin(x) with dom(f) = R . This is not 1-1 because sine oscillates just like
cosine. However, if we reduce the domain to [−π/2, π/2] we obtain a 1-1 function on that interval (red ), so
we can find an inverse function( blue ),

and you can see that the inverse is the reflection of the graph of sine about the line (green). The domain of
inverse sine is [−1, 1] and the range is [−π/2, π/2]. In principle one could construct other inverses for sine
based on other intervals, the choice of [−π/2, π/2] is simply one of convention.
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Example 2.7.10. Let f(x) = tan(x) with dom(f) = R − {nπ + π/2 | n ∈ Z}. This is not 1-1 because
tangent function oscillates just like sine and cosine. However, if we reduce the domain to (−π/2, π/2) we
obtain a 1-1 function on that interval (red ), so we can find an inverse function( blue ),

and you can see that the inverse is the reflection of the graph of tangent about the line y = x (green ). The
domain of inverse tangent is (−∞,∞) and the range is (−π/2, π/2). I have added the vertical asymptotes
of tangent in cyan at x = ±π2 you can see that the inverse tangent has horizontal asymptotes at y = ±π2 .
This illustrates a general pattern, vertical asymptotes for a function will morph into horizontal asymptotes
for the inverse function. We will make use of this example in later chapters. It helps us understand what
the limit of tan−1(x) is as x→∞ (it’s π/2).

By now you should have noticed that we can construct the inverse function’s graph by reflection about the
line y = x (assuming that the function is 1-1 on the interval of interest ). I actually use this fact to construct
certain graphs.

You can draw the graph y = ex (red) then draw the line y = x (green) and a bunch of perpendicular bisectors
(cyan ) then the graph of the inverse function y = ln(x) follows. If we travel one unit from the red graph to
the green line along the cyan line then the corresponding point on the blue graph is one unit further past
the green line. That is the green line should intersect the cyan line at the midpoint between the intersection
points of the red and blue graphs. Now, I should warn you that this advice is given for graphs with horizontal
and vertical directions given the same scale. The cyan lines and the green line would take a different slant
if x-axis and y-axis used a different scale.
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Problems

Problem 2.7.1. Let f(x) = x2 + 1 find the inverse of f on [−2,−1].

Problem 2.7.2. Suppose f(x) = ln(2x+ 3). Find f−1(y).

Problem 2.7.3. Suppose f(x) = 103x − 1. Find f−1(y).

Problem 2.7.4. Give an example of a function which is not invertible on any subset of its domain containing
two or more points.

Problem 2.7.5. Suppose f restricts to g(x) = x2 on [0,∞) whereas f restricts to h(x) = −x2 on (−∞, 0].
Is f invertible? If yes then find f−1. If no then explain why.

Problem 2.7.6. Let x be a particular distance in miles and y be the distance in feet. Suppose y = f(x),
find the formula for f(x). Also, find the formula for f−1(y).

Problem 2.7.7. The equation 9K = 5(F +459.67) relates the degrees Kelvin (K) to the degrees Farenheight
(F ). Find F as function of K. Find K as a function of F .

Problem 2.7.8. Suppose f(x) = sin(x). Find the formula for the inverse of f on [−π/2, 3π/2] in terms of
the standard inverse sine function.
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2.8 elementary functions

The functions we discuss in this section are the most common functions used in calculus. We can model a
great variety of phenomena with these functions.

2.8.1 polynomial functions

We say p is a polynomial function of degree n if it has the form p(x) = anx
n + an−1x

n−1 + · · · a1x + ao
where an 6= 0 and we call an, an−1, . . . , ao ∈ R the coefficients of the polynomial. where and we call the
coefficients of the polynomial. The set of all polynomials in the variable x is denoted R[x]. To say p(x) ∈ R[x]
is to say p(x) is a polynomial.

2.8.2 power functions

We say f is a power function if f(x) = xa where a is a fixed constant. There are a few special cases with
added labels,

1. a = n ∈ N then f(x) = xn is a homogeneous polynomial.

2. a = 1
n with n ∈ N then f(x) = x

1
n ≡ n

√
x is the nth-root function.

3. a = −1 then f(x) = 1
x is the reciprocal function.
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2.8.3 rational functions

We say that f is a rational function if it has the form f(x) = p(x)/q(x) for a pair of polynomial functions
p and q. The zeros of f occur at the zeros of p if anywhere. However, it is possible that a zero of p is also a
zero of q in which case the point could be a zero, a hole in the graph or a vertical asymptote. The domain
of a rational function is simply all the points where we avoid division by zero;

dom

(
p

q

)
= {x ∈ R | q(x) 6= 0}.

The reciprocal function is a rational function. A typical example of a rational function is

f(x) =
x(x− 1)(x− 3)

x(x2 − 5x+ 6)

this function has a hole in the graph at zero and three. It has a vertical asymptote at x = 2. It has a zero
at (1, 0).

Note, dom(f) = (−∞, 0)∪ (0, 2)∪ (2, 3)∪ (3,∞) = R− {0, 2, 3}. Can you tell me the formula for a function
that agrees with f on R − {2} but has no holes? It’s not a hard question (that function is often called the
reduced function in precalculus)

2.8.4 algebraic functions

We say that f is an algebraic function if it has a formula which is comprised of finitely many algebraic
operations. By algebraic we mean you may add, subtract, multiply, divide and raise to powers or take roots.
This category of functions includes all the preceding examples in 1,2 and 3. The domain for an algebraic
function is simply all the inputs which result in a real number output. That means we must avoid taking
the square root of a negative number and also division by zero. A silly example of an algebraic function is
f(x) =

√√
x−
√
x. What is the difference between this function and g(x) = 0? I’ll give you a clue, it’s just

the domain that is different.
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2.8.5 trigonometric functions

Trigonometric functions such as sine, cosine and tangent are based on the geometry of triangles. Recall
a right triangle is one for which an angle measures 90 degrees (or radians, or 100 grads, etc...).

In the picture above we assume that A,B,C > 0 and we have drawn the triangle so that 0 < θ < π/2, it is
an acute angle. You may recall that the side A is adjacent to the angle θ while the side B is opposite the
angle θ. The longest side C is called the hypotenuse.

Theorem 2.8.1. Pythagorean Theorem

Let A,B,C be the sides of a right triangle with hypotenuse C then A2 +B2 = C2.

We could go on and list many more facts that are known about triangles and the geometric ratios of sine,
cosine and tangent. Instead, I remind you how these functions which are defined for any value of θ.
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These functions extend the quadrant I geometric quantities to the other three quadrants. The definitions
also make polar coordinates work. The polar coordinates of P = (x, y) are r, θ where

x = r cos(θ) y = r sin(θ), r2 = x2 + y2, tan(θ) =
y

x

and we call r the radial coordinate and θ is the standard angle. There are a number of conventions as
to what particular values the polar coordinates should be allowed to take. We usually13 insist that r ≥ 0
but make no particular restriction on θ, this means that r =

√
x2 + y2 however θ is not uniquely defined for

a given point because we can always add a integer multiple of 2π and still get the same point. The xy-plane
is divided into four quadrants. See below how the sine and cosine of the standard angle θ matches the signs
of sin(θ) and cos(θ).

Or perhaps the following diagrams make more sense to you,

13admittedly , we do allow r < 0 when we discuss polar graphing later in the calculus sequence. There is some
ambiguity about what is meant by polar coordinates, I simply made a choice here.
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Since r =
√
x2 + y2 ≥ 0 we see that the formulas x = r cos(θ) and y = r sin(θ) reproduce the correct signs

for the Cartesian coordinates x and y. My point here is simply that sine and cosine not only include basic
geometric ratios about triangles, they also encode the signs of the Cartesian coordinates in all four quadrants.

Remark 2.8.2.

Calculator Warning: Given the Cartesian coordinates of a point it is a common task to find
the standard angle θ , we can solve tan(θ) = y

x for θ by taking the inverse tangent to obtain
θ = tan−1( yx ). Let me explain some of the dangers of this formula. Notice that tan(θ) is positive in
quadrants I and III and is negative in quadrants II and IV. If you try to solve for with a calculator it
cannot detect the difference between I and III or II and IV. Let’s see how the formula is ambiguous
if you are not careful,

i.) Suppose x = 1, y = 1 then tan(θ) = 1/1 = 1. We can solve for θ by taking the inverse tangent of
both sides, tan−1(tan(θ)) = θ = tan−1(1) now most scientific calculators will calculate the inverse
tangent to be tan−1(1) = π/4. In this case the calculator has not misled, the standard angle is
θ = π/4.

ii.) Suppose x = −1, y = −1 then tan(θ) = −1/− 1 = 1. We can solve for θ by taking the inverse
tangent of both sides, tan−1(tan(θ)) = θ = tan−1(1) and again the calculator will calculate the
inverse tangent to be tan−1(1) = π/4. In this case the calculator might mislead us, the standard
angle is not θ = π/4. In fact the standard angle here lies in quadrant III and so we have to add π
to the angle the calculator found to get the correct angle of θ = 5π/4.

2.8.6 reciprocal trigonometric functions

Reciprocal trigonometric functions: these appear quite often in difficult integrations. Secant, cosecant
and cotangent are defined to be one over the functions cosine, sine and tangent respectively. We use the
notation,

sec(θ) =
1

cos(θ)
csc(θ) =

1

sin(θ)
cot(θ) =

cos(θ)

sin(θ)

The graphs of these functions are given below:
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2.8.7 inverse trigonometric functions

Inverse trigonometric functions: we should be careful to distinguish the inverse trigonometric functions
from the reciprocal trig functions. The inverse trig functions are denoted by sin−1, cos−1 and tan−1 which I
refer to as inverse sine, inverse cosine and inverse tangent respectively. They satisfy the equations,

sin−1(sin(x)) = x cos−1(cos(y)) = y tan−1(tan(z)) = z

for x ∈ [−π2 ,
π
2 ], y ∈ [0, π] and z ∈ (−π2 ,

π
2 )

sin(sin−1(x)) = x cos(cos−1(y)) = y tan(tan−1(z)) = z

For x ∈ [−1, 1], y ∈ [−1, 1] and z ∈ R. Let us collect the graphs of the inverse trig functions for future
reference.

The green lines illustrate horizontal asymptotes of inverse tangent. The occur at y = π/2 and y = −π/2.
These are all local inverses, this is the reason the ”inverse tangent” failed to provide us the correct angle
outside quadrants I and IV. The inverse tangent function is only truly the inverse of tangent in quadrants I
and IV for −π/2 < θ < π/2.

2.8.8 exponential functions

Exponential functions: let a > 0 then we say that is an exponential function if f(x) = ax for each
x ∈ R. The fixed number a is called the base of the exponential function. Exponential functions are nonzero
everywhere. The graph below shows the three shapes an exponential function may take.
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If a > 1 then f(x) = ax gives us exponential growth. If 0 < a < 1 then f(x) = ax gives us exponential decay.
The graph appears to get to zero, but this is not the case, exponential functions never reach zero. We see
that if a 6= 1,

dom(ax) = (−∞,∞) range(ax) = (0,∞)

If f(x) = ex then this is the exponential function, more often than not we will work with this particular
base, the number e ≈ 2.71 . . . is called Euler’s number in honor of the famous mathematician Euler. It is
a transcendental number which means it is defined by an equation which transcends simple algebra. We will
discuss ex is some depth in later chapters.

2.8.9 logarithmic functions

Logarithmic functions: these are the inverse functions of the exponential functions. Suppose a > 1, we
say that f(x) = loga(x) is a logarithmic function, and that the log base a of x (this is how we verbalize
the formula when we’re talking out the math) satisfies the following equations,

loga(ax) = x aloga(x) = x

In this sense the logarithm and exponential functions cancel. An equivalent way to define the logarithm is
to say that if y = ax then loga(y) = x. Notice that the input of the logarithm must be positive since aloga(x)

is positive; dom(loga(x)) = 0,∞).

dom(loga(x)) = (0,∞) range(loga(x)) = (−∞,∞)

The natural log function is denoted ln(x), this the logarithmic function with base e = 2.71 . . . that simply
means loge(x) = ln(x). This particular logarithmic function is so important that it gets its own notation.
We will encounter it frequently in later chapters.

The graph of y = ln(x) shows that the natural log has one zero at x = 1.

We can see that dom(ln(x)) = (0,∞) and the range(ln(x)) = (−∞,∞).
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The following table has common identities we need for solving exponential and logarithmic equations.
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2.8.10 hyperbolic functions

Hyperbolic functions: these are little less common then some of the other functions we have discussed so
far, however they are useful both for certain questions of integration and also Einstein’s special relativity.

1. hyperbolic cosine: cosh(x) = 1
2 (ex + e−x),

2. hyperbolic sine: sinh(x) = 1
2 (ex − e−x),

3. hyperbolic tangent: tanh(x) = sinh(x)
cosh(x) .

At first glance it is a little strange to call these trigonometric, that label comes from an understanding
of cosine and sine in terms of imaginary exponentials eix where i =

√
−1. We will discuss imaginary

exponentials in due time. For now just observe that

cosh2(x)− sinh2(x) = 1.

This is clearly similar to the corresponding identity cos2(x) + sin2(x) = 1. We also note that cosh(0) = 1
and sinh(0) = 0, these identities make hyperbolic cosine and sine a better choice of notation than ex and
e−x for certain questions.

The inverse hyperbolic functions are cosh−1(x), sinh−1(x) and tanh−1(x). These satisfy the formulas,

cosh(cosh−1(x)) = x sinh(sinh−1(y)) = y tanh(tanh−1(z)) = z

for x ∈ [1,∞), y ∈ R and z ∈ (−1, 1) and,

cosh−1(cosh(x)) = x sinh−1(sinh(y)) = y tanh−1(tanh(z)) = z

for x ∈ [0,∞), y ∈ R and z ∈ R. The hyperbolic sine and tangent functions are injective so they have a
global inverse. In contrast, the hyperbolic cosine is not injective and it is customary to let cosh−1(x) denote
the local inverse for hyperbolic cosine restricted to [0,∞).
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Problems

Problem 2.8.1. List the elementary functions and sketch their graphs.

Problem 2.8.2. Calculate sinh(2).

Problem 2.8.3. Calculate cosh−1(3).

Problem 2.8.4. Show that cosh2(x)− sinh2(x) = 1.

Problem 2.8.5. Simplify cosh(x)− sinh(x).



2.9. TRIGONOMETRY 55

2.9 trigonometry

In this section I try to present most if not all the useful trigonometric identities for calculus. It is not too
hard to prove that the law of cosines follows from the Pythagorean Theorem: if A,B,C are the lengths of
the sides of a triangle with angle θ opposite C then

C2 = A2 +B2 − 2AB cos θ

Note that when θ = π
2 we recover the usual identity C2 = A2 +B2. The law of cosines applies to arbitrary

triangles whereas the Pythagorean theorem only applies to right-triangles.

With a little trouble and ingenuity you can use the Law of cosines applied to certain pictures to deduce the
fundamental identities which I refer to as the adding angles identities

cos(θ + β) = cos θ cosβ − sin θ sinβ

sin(θ + β) = sin θ cosβ + cos θ sinβ

With these two identities we can derive most anything we want. The examples that follow are in no particular
order. I only use the adding angle identities and the definitions of tangent plus a little algebra.

Example 2.9.1.

tan(θ + β) =
sin(θ + β)

cos(θ + β)

=
sin θ cosβ + cos θ sinβ

cos θ cosβ − sin θ sinβ

=

sin θ cos β
cos θ cos β + cos θ sin β

cos θ cos β

cos θ cos β
cos θ cos β −

sin θ sin β
cos θ cos β

⇒ tan(θ + β) =
tan θ + tanβ

1− tan θ tanβ

While we are on this example, note if θ = β then we find

tan(2θ) =
2 tan θ

1− tan2 θ
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Example 2.9.2. The case θ = β gives interesting formulas for sine and cosine,

cos(θ + θ) = cos θ cos θ − sin θ sin θ ⇒ cos(2θ) = cos2 θ − sin2 θ.

Likewise,

sin(θ + θ) = sin θ cos θ + cos θ sin θ ⇒ sin(2θ) = 2 sin θ cos θ.

Since cos2 θ + sin2 θ = 1 thus sin2 θ = 1− cos2 θ it follows that cos(2θ) = 2 cos2 θ − 1 hence

cos2 θ =
1

2

(
1 + cos(2θ)

)

Similarly we can solve for sin2 θ to obtain,

sin2 θ =
1

2

(
1− cos(2θ)

)

Problems

Problem 2.9.1. Use the identity cos(α− β) = cos(α) cos(β) + sin(α) sin(β) to simplify cos(A+B).
( Hint: try substituting α = A and β = −B)

Problem 2.9.2. Show that cos
(
x− π

2

)
= sin(x).

Problem 2.9.3. Show that sin
(
x+ π

2

)
= cos(x).

Problem 2.9.4. Use the previous three exercises to simplify sin(A+B). (Hint: try letting x = A+B)

Problem 2.9.5. Show that sin(x+ 2πn) = sin(x) for all x ∈ R and n ∈ Z.

Problem 2.9.6. Show that cos(x+ 2πn) = cos(x) for all x ∈ R and n ∈ Z.

Problem 2.9.7. Show that tan(x+ πn) = tan(x) for all x ∈ R and n ∈ Z.

Problem 2.9.8. Find the solution set of sin(x) = 0 (the solution set should contain all solutions)

Problem 2.9.9. Find the solution set of cos(x) = 0 (the solution set should contain all solutions)

Problem 2.9.10. Find all solutions of tan(x) = 1 on [−2π, 2π].

Problem 2.9.11. Find all solutions of sin(2x) = 1
2 .
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2.10 complex numbers and trigonometry

Naturally, we can continue in this fashion to derive a great variety of trigonometric identities. There is some-
thing somewhat unsatisfying about this method. The calculation is indirect. Suppose we wanted to simplify
the expression sin(θ) cos(4θ). How would we do it? To be fair, there are identities for sin(θ) sin(β), cos(θ) cos(β)
and sin(θ) cos(β) so we could just look those up and go from there. But, is there a better way to remember all
these facts? Is there some elegant formula which encapsulates all these trigonometric identities and reduces
these problems to little more than algebra? In fact, yes. However, it comes at the price of understanding a
bit of basic complex variables. I would argue that this is a worthy price since most students need to learn
more about complex numbers anyway.

We usually denote a complex numbers a + ib for a, b ∈ R. Alternatively, perhaps you’ve see the notation
a + b

√
−1. But, what is a complex number14? In terms of the axioms of real numbers we can prove√

−1 /∈ R. What then is this odd quantity of
√
−1? Gauss gave an answer to this question in terms of

explicitly real mathematics. Gauss showed how to build complex numbers from real numbers. In particular,
he said complex numbers could be identified with pairs of real numbers that enjoy a certain rather beautiful
multiplication; C = R2 where (a, b) ∗ (c, d) = (ac− bd, ad+ bc). This is usually denoted

(a+ ib)(c+ id) = ac+ iad+ ibc+ i2bd = ac− bd+ i(ad+ bc)

Where we denoted i = (0, 1) hence i2 = (0, 1) ∗ (0, 1) = −(1, 0) and since (1, 0) ∗ (a, b) = (a, b) we denote
(1, 0) = 1 hence the relation i2 = −1. In fact, that was the whole reason to define this funny multiplication
∗, Gauss wanted a formal system to construct a number with the property i2 = −1. This number i was
termed ”imaginary” since it didn’t fall into the category of the real numbers, it has different properties. You
don’t need to remember a+ ib = (a, b) for most questions and it is doubtful you’ll see it again until you take
the complex variables course. I include this somewhat nonstandard material here to drive home the point
that there is nothing at all imaginary about complex numbers.

Complex numbers can be added, subtracted, multiplied and divided just the same as real numbers. Complex
number have a real and imaginary part,

Re(a, b) = Re(a+ ib) = a Im(a, b) = Im(a+ ib) = b

In general if z ∈ C then z = Re(z) + iIm(z). It should be emphasized that Re(z), Im(z) ∈ R so there is
a natural correspondence between complex numbers and the Cartesian Plane R2; I use this correspondence
when I write (x, y) = x + iy. This plane is called the complex plane. The x-axis is called the real-axis, the
y-axis is called the imaginary-axis. Sometimes also called an Argand diagram,

14the answer I give here is just one of several popular constructions. We could also build complex numbers from
2 × 2 matrices or a rather abstract construction called a ”field extension”. This is the construction most accessible
at this point in your education



58 CHAPTER 2. FOUNDATIONS OF MATHEMATICS

Suppose x, y ∈ R in what follows. Every complex number z = x + iy has a complex-conjugate z = x − iy.
In the complex plane the mapping z → z∗ is a reflection across the x-axis.

Gauss proved that any polynomial with real-coefficients can be completely factored over the complex numbers
(his thesis work in about 1800). For example, we usually say that x2 + 1 is an irreducible quadratic. This is
true with respect to real numbers, however if we use complex numbers to assist with the factorization then
we can factor x2 + 1 = (x + i)(x − i). Generally, a quadratic polynomial ax2 + bx + c with b2 − 4ac < 0
is called irreducible because we cannot factor it over the real numbers. Notice that the quadratic formula
still makes sense in this case it just gives complex solutions. We can pull15 an i =

√
−1 out of the square

root; √
b2 − 4ac =

√
(−1)(4ac− b2) =

√
−1
√

4ac− b2 = i
√

4ac− b2

where the quantity
√

4ac− b2 ∈ R since 4ac− b2 > 0. If ax2 + bx+ c = 0 then it can be shown,

x =
−b±

√
b2 − 4ac

2a
=
−b± i

√
4ac− b2

2a
= α± iβ

where I have defined Re(x) = α = − b
2a and β =

√
4ac−b2

2a . The quadratic polynomial factors as follows:

ax2 + bx+ c = a[x− (α+ iβ)][x− (α− iβ)]

The roots α+ iβ and α− iβ form a conjugate pair. Any polynomial with real coefficients can be completely
factored with the help of complex numbers. When an irreducible quadratic appears in the factorization it
gives rise to a pair of linear factors whose roots form a conjugate pair.

2.10.1 the complex exponential*

It is likely you will motivate this formula in the complex variables course. Ultimately there are many ways
to understand the definition given below is the only definition which is natural, however most of those
explanations involve calculus. That said, we can understand the necessity of the definition from a purely
algebraic/geometric viewpoint: if the exponential function is to be defined on the complex plane then

1. any complex exponential function should restrict to the real exponential function on the real axis in
C.

2. rotations in the plane transform a point (x, y) to a new point (x cos θ− y sin θ, x sin θ+ y cos θ) and in
complex notation that factors to (x+ iy)(cos θ+ i sin θ). If we rotated again by angle β then the point
would be transformed to (x+ iy)(cos(θ+ β) + i sin(θ+ β)). This means the transformation is like the
real exponential function which also has eaeb = ea+b.

15generally
√
zw 6=

√
z
√
w for z, w ∈ C. For example, 1 = (−1)(−1) but −1 = i2 =

√
−1
√
−1 6=

√
(−1)(−1) =√

1 = 1. Laws of exponents are subtle in complex variables, rest assured the quadratic calculation is true for reasons
I’m not going to expose here.
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These two ingredients go together to suggest the following definition ( of course, definitions don’t have to be
motivated, I’m just trying to give you some idea of how you could derive such a rule).

Definition 2.10.1. complex exponential function.

We define exp : C→ C by the following formula:

exp(z) = exp(Re(z) + iIm(z)) = eRe(z)
[
cos(Im(z)) + i sin(Im(z))

]
.

We can show that this definition yields the following desirable properties:

1. eRe(z) = Re(exp(z))

2. exp(iIm(z)) = cos(Im(z)) + i sin(Im(z))

3. exp(0) = 1

4. exp(z + w) = exp(z)exp(w)

5. exp(−z) = 1
exp(z)

6. exp(z) 6= 0 for all z ∈ C

Here eRe(z) denotes the plain-old real exponential function which we will investigate in depth as this course
progresses. Essentially, the second condition says that the complex exponential function must reproduce the
real exponential function when the input is a complex number with zero imaginary part. The proof of (1.) is
simple, just note cos(0) = 1 and sin(0) = 0 hence (2.) follows. Condition 2.) is called Euler’s identity. The
proof of (2.) is simple as well, just notice e0 = 1 then observe that the definition reduces to Euler’s identity.
Again, the proof of (3.) is simple, e0 = e0+i0 = e0(cos(0) + i sin(0)) = 1.

Let’s examine the proof of 4.). Suppose that z = x+ iy and w = a+ ib where x, y, a, b ∈ R. Observe:

exp(z + w) = exp(x+ iy + a+ ib)

= exp(x+ a+ i(y + b))

= ex+a
(
cos(y + b) + i sin(y + b)

)
defn. of complex exp.

= ex+a
(
cos y cos b− sin y sin b+ i[sin y cos b+ sin b cos y]

)
adding angles formulas

= ex+a
(
cos y + i sin y

)(
cos b+ i sin b

)
algebra

= exea
(
cos y + i sin y

)(
cos b+ i sin b

)
law of exponents

= ex+iyea+ib defn. of complex exp.

= exp(z)exp(w).

To prove (5.) we can make use of (3.) and (4.),

exp(z)exp(−z) = exp(z − z) = exp(0) = 1 ⇒ exp(−z) =
1

exp(z)
.

Note that the equation above implies that exp(z) 6= 0 for all z ∈ C so we have proof for (6.). I will use the
notation ez = exp(z) from this point onward16

16 I have emphasized the ways in which the complex exponential is similar to the real exponential, but be warned
there is much more to say. For example, exp(z+2nπi) = exp(z) because the sine and cosine functions are 2π-periodic.
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2.10.2 polar form of a complex number*

We argued that sine and cosine are defined in Quadrants II,III and IV in order to extend right triangle
geometry from Quadrant I in the natural way. In other words, sine and cosine are defined to force the polar
coordinate formulas to be valid17

x = r cos θ y = r sin θ

To make connection with complex numbers unambiguously let’s suppose we have r =
√
x2 + y2 and 0 ≤

θ ≤ 2π. Consider a complex number z = x + iy, convert it to polar coordinates by substituting the polar
coordinate transformations above:

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ.

Definition 2.10.2. polar form of complex number.

Suppose the Cartesian form of a complex number z is given z = x + iy then the polar form of the
complex number is z = rexp(iθ) where r =

√
x2 + y2 and θ is the standard angle of (x, y) measured

counterclockwise from the positive real axis.

Example 2.10.3. Let z = 2 + 2i then r =
√

4 + 4 =
√

8 whereas tan θ = y
x = 2

2 = 1 hence θ = π
4 . The polar

form is z =
√

8 exp
(
iπ4
)
.

Example 2.10.4. Let z = 2 + 2i and multiply by exp(iβ). We found the polar form of z in the last example
is z =

√
8 exp

(
iπ4
)
.

zw =
√

8 exp
(
iπ4
)
exp(iβ) =

√
8 exp

[
i(π4 + β)

]
Multiplication of a complex number z by exp(iβ) rotates z by an angle of β in the counterclockwise direction.

But, this means that the exponential is not 1-1 and consequently one cannot solve the equation ez = ew uniquely.
This introduces all sorts of ambiguities into the study of complex equations. Given ez = ew, you cannot conclude that
z = w, however you can conclude that there exists n ∈ Z and z = w + 2nπi. In the complex variables course you’ll
discuss local inverses of the complex exponential function, instead of just one natural logarithm there are infinitely
many to use.

17my viewpoint, it doesn’t have to be yours, there are lots of ways to think about sine and cosine
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In electrical engineering complex numbers are used to represent the impedance of some circuit. Inductance
and capacitance are give a complex resistance which depends on the frequency of the current present in the
circuit. This phasor method allows you to solve alternating current problems as if they were direct current.
Beware, j =

√
−1 in their formalism because i is used for current. If I was a electrical engineering major

then I would make it a point to take linear algebra and complex variables and differential equations as soon
as possible. It would help you to see past the math and focus on the engineering18.

2.10.3 the algebra of sine and cosine*

Euler’s identity is beautiful on its own, but the following formulas are the most of the reason I’m bothering
to type up these notes. Simply add and subtract eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ to obtain,

cos θ =
1

2

(
eiθ + e−iθ

)
sin θ =

1

2i

(
eiθ − e−iθ

)
.

Example 2.10.5. Suppose you want to derive a nice formula for the square of cosine. Just plug in the boxed
formula and use the laws of exponents we proved for the complex exponential:

cos2 θ =

[
1

2

(
eiθ + e−iθ

)]2

=
1

4

(
eiθeiθ + 2eiθe−iθ + e−iθe−iθ

)
=

1

4

(
e2iθ + 2 + e−2iθ

)
=

1

2
+

1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
+

1

2
cos 2θ

=
1

2

(
1 + cos 2θ

)
.

Example 2.10.6. Suppose you want to derive a nice formula for the square of sine. Just plug in the boxed
formula and use the laws of exponents we proved for the complex exponential:

sin2 θ =

[
1

2i

(
eiθ − e−iθ

)]2

=
−1

4

(
eiθeiθ − 2eiθe−iθ + e−iθe−iθ

)
=
−1

4

(
e2iθ − 2 + e−2iθ

)
=

1

2
− 1

2

1

2

(
e2iθ + e−2iθ

)
=

1

2
− 1

2
cos 2θ

=
1

2

(
1− cos 2θ

)
.

18of course, given all that you might as well add a math major so you have more options later in life.
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The identities above you should have memorized anyway, but I don’t have to memorize them since I can
derive them in a pinch. In contrast, the next example is not one for which I could typically quote the answer
off the top of my head:

Example 2.10.7. Same method again. Covert given functions to imaginary exponentials and do algebra
until you see sines and cosines again. Simple as that.

cos(x) sin(4x) =
1

2

(
eix + e−ix

)
1

2i

(
e4ix − e−4ix

)
=

1

4i

(
e5ix − e−3ix + e3ix − e−5ix

)
=

1

2

[
1

2i

(
e5ix − e−5ix

)
+

1

2i

(
e3ix − e−3ix

)]
=

1

2
sin(5x) +

1

2
sin(3x)

You could calculate identities for cos(ax) cos(bx), sin(ax) sin(bx) by much the same calculation and you’d
find a sum of cosines for each:

cos(ax) cos(bx) =
1

2
cos[(a+ b)x] +

1

2
cos[(a− b)x]

sin(ax) sin(bx) =
1

2
cos[(a+ b)x]− 1

2
cos[(a− b)x]

On the other hand, generally cos(ax) sin(bx) yields a sum of sines,

cos(ax) sin(bx) =
1

2
sin[(a+ b)x] +

1

2
sin[(a− b)x]

Naturally, we could also apply the method to calculate formulas for higher powers or products of sine and
cosine. Just for a flavor:

Example 2.10.8.

cos3 θ =

[
1

2

(
eiθ + e−iθ

)]3

=
1

8

(
e3iθ + 3eiθ + 3e−iθ + e−3iθ

)
=

3

4
sin(θ) +

1

4
sin(3θ).

DeMoivres’ theorem in complex notation is simply (eiθ)n = einθ. When you unfold this into sines and cosines
the result is amazing:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

You can try plugging in n = 2 or n = 3 and you’ll find yet more identities which are less than obvious from
other approaches.
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2.10.4 superposition of waves and the method of phasors*

Sinusoidal waves on a string have the form y = A sin(kx − ωt) + φ). This wave has amplitude A, wave
number k, angular frequency ω and phase φ. If we have two such waves on a string or some other medium
then they combine to create a new wave. The mathematics of a simple case is encapsulated in the following
trigonometric identity:

sin(a) + sin(b) = 2 sin

(
a+ b

2

)
cos

(
a− b

2

)

Suppose we have two waves of equal amplitude (A1 = A2 = A), frequency (ω) and wavenumber (k) traveling
in opposite directions, y1 travels right and y2 travels left,

y1 = A1 sin
[
kx− ωt+ φ1

]
and y2 = A2 sin

[
kx+ ωt+ φ2

]
Consider the superposition of these waves,

y1 + y2 = A sin
[
kx− ωt+ φ1

]
+A sin

[
kx+ ωt+ φ2

]
= 2A sin

[
(kx− ωt+ φ1) + (kx+ ωt+ φ2)

2

]
cos

[
(kx− ωt+ φ1)− (kx+ ωt+ φ2)

2

]
= 2A sin

[
kx+

φ1 + φ2

2

]
cos

[
φ1 − φ2

2
− ωt

]
= 2A sin

[
kx+

φ1 + φ2

2

]
cos

[
ωt− φ1 − φ2

2

]

This is a standing wave with amplitude 2A. The shape of the wave is given by the sine factor then as time
evolves the second factor oscillates between −1 and 1. Perhaps you’ve see such a pattern, if you fix a rope
to a wall then swing the free end you can set up two waves, one created by your waving, the other created
by the reflection of your wave off the wall. The net result is the appearance of a wave that stands still. A
standing wave. Similar mathematics applies to the patterns of pressure variation in pipe organs. Again a
addition of sines or cosines will describe how the notes combine within the instrument.

What about two arbitrary sine waves or cosine waves of the same wave number but possibly different phases.
I’ll eliminate the time term to reduce clutter. I think once we solve this problem it’s easy to add time to our
result.

Problem: find the amplitude and phase of y1 + y2 given that y1 = A1 sin(kx + φ1) and y2 =
A2 sin(kx+ φ2). Also, derive a similar result for cosine.

Solution: Define ỹ1 = A1e
i(kx+φ1) and ỹ2 = A2e

i(kx+φ2). Notice that these complex functions contain both
the sine and cosine functions we wish to add: in particular

y1 = Im(ỹ1) = A1 sin(kx+ φ1), y2 = Im(ỹ2) = A2 sin(kx+ φ2)

The real parts will give us cosines instead. We can calculate the sum of the sine functions by instead adding



64 CHAPTER 2. FOUNDATIONS OF MATHEMATICS

the corresponding complex functions,

ỹ1 + ỹ2 = A1e
i(kx+φ1) +A2e

i(kx+φ2)

= A1e
ikxeiφ1 +A2e

ikxeiφ2

= [A1e
iφ1 +A2e

iφ2 ]eikx

= Aeiγeikx (A and γ from picture)

= Aei[kx+γ]

= A cos[kx+ γ] + iA sin[kx+ γ]

As is often the case with complex variables we solved two real problems at once. Equating the real and
imaginary parts of the equation above yields

A1 sin(kx+ φ1) +A2 sin(kx+ φ2) = A sin[kx+ γ]

A1 cos(kx+ φ1) +A2 cos(kx+ φ2) = A cos[kx+ γ]

where γ is implicitly defined by

tan γ =
A1 sin(φ1) +A2 sin(φ2)

A1 cos(φ1) +A2 cos(φ2)
.

And A is defined by

A =
√

[A1 cos(φ1) +A2 cos(φ2)]2 + [A1 sin(φ1) +A2 sin(φ2)]2

I’ve drawn the picture in quadrants I and II but the argument is general.
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If you had highschool physics you should recognize the construction above as the so-called ”tip-2-tail” method
of vector addition. Have no fear, it’s just trigonometry. Moreover, it is no hard to see the calculation above
easily generalizes to three or more vectors.

Theorem 2.10.9. superposition of waves.

Two waves with identical wave number will combine when added to give another wave with the
same wave number and an amplitude which is between zero and the sum of the individual wave
amplitudes.

It’s tempting to say more here, but I’ll leave it for physics. My intention here was merely to explore a difficult
problem in trigonometry to help you push some boundaries of your knowledge. This treatment of waves is
neither clever nor comprehensive. If you think about it you could just as well apply the calculation to waves
traveling in time in the same direction or opposite directions. You’d recover the boxed formula earlier in
this section as a special case. Also, you could consider waves of different frequencies ω1 6= ω2 interfering, the
result is a wave of frequency ω1+ω2

2 modulated by a beat frequency of ω1−ω2

2 . Pictures of these phenomena
may be found at:

http://paws.kettering.edu/ drussell/Demos/superposition/superposition.html

Finally, I would just mention that sines and cosines are important even though most waves are not sinu-
soidal. Typically waves come in finite packets and their precise mathematical account requires much more
sophisticated terminology. The Fourier decomposition breaks down a waveform into a sum of sines or cosines.
Most digital formats of music are based on transforming the music into its Fourier equivalent then devising
clever methods to compress this data. In contrast, compression of visual data is better accomplished with
something called wavelets. The popular jpg-format is based on wavelets. Fourier analysis is heavily calculus-
based. In contrast, from what I can gather from a talk I heard last year, the Wavelet method for visual data
is primarily linear algebra.

Remark 2.10.10.

The sections marked with a * are optional in the following sense:

1. you could do the analysis using sines and cosines with no mention of complex exponentials,

2. we will not need quite so much trigonometry until the end of this course and the start of
calculus II.

I happen to think this material should be integrated in precalculus mathematics and consequently
we should weave a certain amount of complex variables throughout the calculus sequence. It’s not
that hard if you work on it a little. However, most instructors disagree with me on this point so I
behave and just write these sections for the most elusive creature: the interested reader.19

End of Chapter Problems

Problem 2.10.1. Suppose δ1, δ2 > 0 and a, b ∈ R such that Bδ1(a) ∩ Bδ2(b) 6= ∅. Can you find c ∈ R and
δ3 > 0 such that Bδ3(c) ⊆ Bδ1(a) ∩Bδ2(b)?

Problem 2.10.2. Let A,B,C ∈ R and f(x) = Ax2 +Bx+C. Let r = a+ ib for a, b ∈ R and let r∗ = a− ib.
Show that if f(r) = 0 then f(r∗) = 0.

Problem 2.10.3. Show that cosh−1(x) = ln(x+
√
x2 − 1) for x ≥ 1.
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Problem 2.10.4. Show that sinh−1(x) = ln(x+
√
x2 + 1) for x ∈ R.

Problem 2.10.5. Show that tanh−1(x) = 1
2 ln

(
1+x
1−x

)
for |x| < 1.

Problem 2.10.6. Consider the triangle with vertices (0, 0), (x, y) and (a, 0) pictured below. Use the
pythagorean theorem and the definitions of sine and cosine to argue that c2 = a2 + b2 − 2ab cos(θ).

Problem 2.10.7. Use the diagram below together with the law of cosines and the distance formula to prove
that cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

.



2.10. COMPLEX NUMBERS AND TRIGONOMETRY 67

.
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Chapter 3

limits

There are two major questions we must answer in this chapter

1. what is a limit of a function? In other words, how should the limiting process be carefully defined?

2. how do we calculate limits in the most efficient and reliable fashion? If rigor is not required how should
we allow intuition to guide our thoughts?

I begin with a few pictures and words to set-up the idea of a limit. Then we give a careful definition.
After that we’ll build the theory from scratch theorem by theorem. Once the theory is settled then we’ll
turn our focus to item (2.). Limits are important because all of calculus is traditionally1 formulated at its
foundation by limiting processes. The tangent line is the limit of secant lines, the Riemann integral can be
viewed as the limit of an approximating sum. Therefore, to understand calculus properly we will need a
good understanding of the limit.

3.1 graphical motivation of limit

At this point I suspect words are uneccessary, they can only do harm. Instead some pictures should illustrate
what is meant by the terms:

1. ”taking the limit from the left at x = a”

2. ”taking the limit from the right at x = a”

3. ”taking the limit at x = a”

1it may be worth mentioning that there is a formulation of calculus which does not use limits and yet reproduces
the same theorems and results. It’s called non-standard analysis. The text is free online if you’re curious.
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(I.) The function f(x) graphed below has

1. ”f(x)→ 2 as x approaches 0 from the right”

2. ”f(x)→ −2 as x approaches 0 from the left”

3. ”the limit of f(x) as x approaches 0 does not exist because the left and right limits at zero
do not exist”

It may not be entirely clear to you if the function is defined at x = 0 in the picture. It actually would not
change the result if both the left and right graphs had open circles at (0,−2) and (0, 2) respective. The
idea of the limit is to look at values of the function near the limit point, but not at the limit point. In this
discussion the limit point was x = 0.

(II.) The function f(x) graphed below has

1. ”f(x)→ 4 as x approaches 2 from the right”

2. ”f(x)→ 4 as x approaches 2 from the left”

3. ”the limit of f(x) as x approaches 2 does exist and is equal to 4 because the left and right
limits both exist and are also equal to 4.”

The little black circle is meant to denote the fact that 2 /∈ dom(f). We can take the limit at 2 even though
f(2) is not defined. To say that f(x)→ 4 as x→ 2 means that as we take values of f(x) close to 4 we can
find x near 2 which give those values close to 4.
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Warning: you cannot reverse the sentence above. The idea is that as we take values close to
the alleged limiting value L we can find inputs near the limit point which returns values close
to the limit

However, even my warning fails to capture part of the idea. Let’s look at a picture, this is called the Dirchlet

function; f(x) =

{
1 if x ∈ Q
0 if x ∈ J = R−Q

. The best I can do to the limit of the resolution is as follows:

This function misbehaves. Don’t misunderstand my graph. I don’t mean to say that f is not single-valued.
It truly is since either x ∈ Q or x /∈ Q hence the value of the function is either 1 or 0. Think about f(x)→ L
as x → 0. Should we expect that L = 1 or L = −1? Certainly if we look at values close to L = 1, for
example L = 1 we can find xo close to x = 0 such that f(xo) = 1. However, no matter how close xo is to
zero we can always find x1 /∈ Q which is closer to zero and has f(x1) = 0. Therefore, it’s not enough for
values of the function near the limit point to take values close to L. We need the values ”close” to the limit
point to be reached by all the points near to the limit point. Perhaps you can start to see we need to use
the concept of a set to properly understand the limit.

The terms∞ or −∞ are simply nice notation for expressing a certain type of behavior in a graph. I introduce
them here because they help us discuss limits. The examples up to now all involved jump-discontinuities or
removable-discontinuities. The example below has vertical asymptotes which spoil the limits in question.

(III.) The function f(x) graphed below has

1. ”f(x)→∞ as x approaches 2 from the right”

2. ”f(x)→ −∞ as x approaches 2 from the left”

3. ”the limit of f(x) as x approaches 2 does not exist because the left and right limits do not
agree.”

But, in contrast,

1. ”f(x)→∞ as x approaches −2 from the right”

2. ”f(x)→∞ as x approaches −2 from the left”

3. ”the limit of f(x) as x approaches −2 does not exist in R, and it is ∞ because the left and
right limits both are ∞.”
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When we say ”does not exist in R” we mean just that;∞ is not a number. When a limit is ”equal to infinity”
that is simply a way of communicating that the limit does not exist as a real number and it does so in a
particular manner. We saw before there are other ways the limit may fail to exist. Let us examine one more
misbehaving function.

(IV.) The function f(x) graphed below has

1. ”the limit of f(x) as x approaches 0 from the right does not exist due to oscillation at the
limit point”

2. ”the limit of f(x) as x approaches 0 from the left does not exist due to oscillation at the limit
point”

3. ”the limit of f(x) as x approaches 0 does not exist due to oscillation at the limit point”

You could also imagine an example where we has oscillation just on the left or just on the right. The
examples given thus far should serve to illustrate the typical ways which limits either exist or d.n.e. as real
numbers. Let me conclude this section with a less exciting, but far more common situation,
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(V.) The function f(x) graphed below has

1. ”f(x)→ f(a) as x approaches a from the right”

2. ”f(x)→ f(a) as x approaches a from the left”

3. ”the limit of f(x) as x approaches a exists and is equal to f(a) because the left and right
limits exist and are equal to f(a).”

In the graph above any point a ∈ dom(f) has values near f(a) which are close to f(a), there are no jumps,
asymptotes or oscillations which get bunched up on some point. This function is called continuous because
it has a connected graph which could be drawn with one uninterrupted stroke of a pen. This graphical
definition of continuous is not the one I wish to see on the exam. We will soon offer a better description
in terms of limits. But, first we need to settle just what a limit is. Remember, this section was simply to
motivate the one that follows. We usually have more than a graph to reason with so we can give better
arguments than the ones offered in this section. In fact, to be honest, I have yet to give an argument about
a limit. This section was basically just a bunch of name-calling ( but in a good way).

Problems

Problem 3.1.1. What does it mean for the limit to exist at p?

Problem 3.1.2. What does it mean for the right-limit to exist exist at p?

Problem 3.1.3. What does it mean for the left-limit to exist exist at p?

Problem 3.1.4. Why can’t we just plug in x = p when considering the limit at p?
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3.2 definition of the limit

I am certainly indebted to the excellent text Calculus by Apostol. A worthy purchase if you’re a math major.

3.2.1 two-sided limit

Recall that Bδ(a) = {x ∈ R | d(a, x) < δ} = (a−δ, a+δ) is a neighborhood2 centered at a with radius δ > 0.
Likewise, Bδ(a)o = {x ∈ R | 0 < d(a, x) < δ} = (a− δ, a) ∪ (a, a+ δ) is a deleted nbhd. centered at a.

Definition 3.2.1. limit

Let f be a function and a, L ∈ R. We say that f(x)→ L as x→ a iff for each nbhd. Bε(L) centered
at L there exists a deleted nbhd. Bδ(a)o centered at a such that f(Bδ(a)o) ⊆ Bε(L). In the case
that the condition above is met we say that the limit exists and denote this by

lim
x→a

f(x) = L.

This definition emphasizes the geometry of the limit. To understand this, meditate on the following diagram:

Basically the idea is just that if we zoom in on an ε-band centered about L then the limit exists if we can
find a δ-band centered about a such that the box made from the intersection of these bands captures the
graph of the function for all the values in (a − δ, a) ∪ (a, a + δ). Pragmatically, we would like an easier
formulation of the limit to prove theorems and solve problems. For that end we restate the definition in
terms of inequalities and absolute values. I invite the reader to verify this is nothing more than a change of
notation from Definition 3.2.1.

2clearly an abbreviation is warranted here, we’ll use nbhd. from here on out
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Definition 3.2.2. limit

Let f be a function and a, L ∈ R. We say that f(x) → L as x → a iff for each ε > 0 there exists
δ > 0 such that for all x ∈ R with 0 < |x − a| < δ it follows |f(x) − L| < ε. In the case that the
condition above is met we say that the limit exists and denote this by

lim
x→a

f(x) = L.

Sometimes the condition that must be met by the function is instead stated:

”|f(x)− L| < ε whenever 0 < |x− a| < δ”

This is equivalent to the language in my definition provided the reader realizes that we must have this con-
dition hold for all x ∈ R that meet the condition 0 < |x − a| < δ. If even one value fails then you have to
find a better δ or perhaps give up and prove the limit does not exist3

We will eventually have theorems which do the calculations that follow in this section with ease. However,
do not ignore the calculations that follow. This material is challenging and required. Most students have to
really do some thinking to become proficient in the arguments which are offered in the upcoming examples.

Example 3.2.3. Problem: prove limx→2(3x+ 2) = 8 directly by the definition of the limit.

Preparatory calculations: We need to show that |x− 2| < δ implies |f(x)−L| < ε for f(x) = 3x+ 2 and
L = 8 and a particular choice of δ. Consider then

|f(x)− L| = |3x+ 2− 8| = |3x− 6| = |3(x− 2)| = 3|x− 2| < 3δ = ε.

So, we should choose δ = ε/3 since ε > 0 it is clear that δ = ε/3 > 0. In view of these calculations we are
ready to state the proof.

Proof: Let ε > 0 and choose δ = ε/3. Suppose x ∈ R such that 0 < |x− 2| < δ. Observe that

|3x+ 2− 8| = |3(x− 2)| = 3|x− 2| < 3δ = ε.

Thus 0 < |x − 2| < δ implies |3x + 2 − 8| < ε and it follows by the definition of the limit that
limx→2(3x+ 2) = 8. �

Students sometimes ask me which part is the answer. My answer is that the whole proof is the answer. It
is important that it contains all the proper logical statements put in the logical order. Basically, a ”proof”
is simply a complete explanation of why some statement is true. I will admit there is ambiguity as to what
constitutes a ”complete” proof in general. However, in the context of this course there is less ambiguity since
I am giving you examples which show you how much detail is required.

3remember, ”exist” in this context means ”exist as a real number”, it certainly could be argued that all limits
exist in the sense of being a concept held by many rational beings.
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Example 3.2.4. Problem: prove limx→3(2− x) = −1 directly by the definition of the limit.

Preparatory calculations: We need to show that |x− 3| < δ implies |f(x)− L| < ε for f(x) = 2− x and
L = −1 and a particular choice of δ. Consider then

|f(x)− L| = |2− x− (−1)| = | − x+ 3| = | − 1(x− 3)| = |x− 3| < δ = ε.

So, we should choose δ = ε.

Proof: Let ε > 0 and choose δ = ε. Suppose x ∈ R such that 0 < |x− 3| < δ. Observe that

|2− x− (−1)| = | − x+ 3)| = |x− 3| < δ = ε.

Thus 0 < |x − 3| < δ implies |2 − x − (−1)| < ε and it follows by the definition of the limit that
limx→3(2− x) = −1. �

Example 3.2.5. Problem: prove limx→0(x2) = 0 directly by the definition of the limit.

Preparatory calculations: We need to show that |x − 0| < δ implies |f(x) − L| < ε for f(x) = x2 and
L = 0 and a particular choice of δ. Consider then

|f(x)− L| = |x2 − 0| = |x|2 < δ2 = ε.

So, we should choose δ =
√
ε. Since ε > 0 we can be assured that the squareroot gives δ > 0.

Proof: Let ε > 0 and choose δ =
√
ε. Suppose x ∈ R such that 0 < |x− 0| < δ. Observe that

|x2 − 0| = |x|2 < (
√
ε)2 = ε.

Thus 0 < |x−0| < δ implies |x2−0| < ε and it follows by the definition of the limit that limx→0(x2) =
0. �

Example 3.2.6. Problem: prove limx→3(x2) = 9 directly by the definition of the limit.

Preparatory calculations: We need to show that |x − 3| < δ implies |f(x) − L| < ε for f(x) = x2 and
L = 9 and a particular choice of δ. Consider then

|f(x)− L| = |x2 − 9| = |(x− 3)(x+ 3)| < δ|x+ 3|

Ok, so |x+3| is annoying. But, have no fear, we control the δ. Note that 0 < |x−3| < δ gives 3−δ < x < 3+δ
so 6−δ < x+3 < 6+δ. Suppose δ < 1 then we certainly have that 5 < x+3 < 7 which gives −7 < 5 < x+3 < 7
so |x+ 3| < 7 which is very nice because, given our assumption δ < 1 we find:

|f(x)− L| =< δ|x+ 3| < 7δ.

now the choice should be clear, we use δ = ε/7. However, we do need that ε/7 < 1, remember we don’t
control ε, all we know is that ε > 0. The solution is simple, to be careful about the possibility of large ε we
choose δ = min(ε/7, 1). If δ = 1 then we still find |x + 3| ≤ 7 and so |f(x) − L| ≤ 7δ < ε provide that
δ = min(ε/7, 1) so we knew δ < ε/7 hence 7δ < ε.
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Proof: Let ε > 0 and choose δ = min(ε/7, 1). Suppose x ∈ R such that 0 < |x − 3| < δ. Observe
that δ ≤ 1 thus 0 < |x− 3| < δ ≤ 1 yields −1 ≤ x− 3 ≤ 1 from which it follows 5 < x+ 3 ≤ 7 hence
−7 < x+ 3 ≤ 7 so |x+ 3| ≤ 7. Therefore,

|x2 − 9| = |(x− 3)(x+ 3)| = |x− 3||x+ 3| < δ|x+ 3| < 7δ

Moreover, as δ ≤ ε/7 we have 7δ ≤ ε. Thus, 0 < |x− 3| < δ implies that |x2 − 9| < ε and it follows
by the definition of the limit that limx→3(x2) = 9. �

Example 3.2.7. Problem: prove limx→5 |x| = 5 directly by the definition of the limit.

Preparatory calculations: We need to show that |x − 5| < δ implies |f(x) − L| < ε for f(x) = |x| and
L = 5 and a particular choice of δ. I find that ||x| − 5| is best covered by forcing δ < 1 for convenience:
notice that δ < 1 and the assumption 0 < |x− 5| < δ yields −1 < −δ < x− 5 < δ < 1 hence 4 < x < 6 which
is nice because that means that x is positive so |x| = x. Suppose δ < 1 and 0 < |x− 5| < δ it follows that

||x| − 5| = |x− 5| < δ.

we can choose ε = δ. However, you might worry, what if ε > 1? In that case we can just choose δ = 1 then
||x| − 5| = |x − 5| < δ = 1 < ε. So, to take care of both cases we should simply choose δ = min(1, ε). The
notation ”min” means to take the minimum of the values.

Proof: Let ε > 0 and choose δ = min(1, ε). Suppose x ∈ R such that 0 < |x− 5| < δ. Observe that
we have δ < 1 hence 0 < |x−5| < δ < 1 yields −1 < x−5 < 1 hence 4 < x < 6 so |x| = x. Consider
then,

||x| − 5| = |x− 5| < δ ≤ ε.

Thus 0 < |x−5| < δ implies ||x|−5| < ε and it follows by the definition of the limit that limx→5 |x| =
5. �

Example 3.2.8. Problem: Let f(x) = x|x− 2|, prove limx→3 f(x) = 3 directly by the definition of
the limit.

Preparatory calculations: We need to show that |x − 3| < δ implies |f(x) − L| < ε for f(x) = x|x − 2|
and L = 3 and a particular choice of δ. Consider then

|f(x)− L| = |x|x− 2| − 3|
≤ |x|x− 2||+ | − 3| triangle inequality
= |x||x− 2||+ 3 used |ab| = |a||b| and ||a|| = |a| since |a| ≥ 0
= |x− 3 + 3||x− 3 + 1|+ 3 used x− 2 = x− 3 + 1
≤ (|x− 3|+ 3)|(|x− 3|+ 1) + 3 triangle inequality twice
= |x− 3|2 + 4|x− 3|+ 6 just algebra
= δ2 + 4δ + 6 supposing |x− 3| < δ

So, we should insist that δ2 + 4δ+ 6 ≤ ε. This is a quadratic equation in δ. If I tinker with the 4 I can make
it factor. If δ > 0 it is clear that

δ2 + 4δ + 6 < δ2 + 5δ + 6 = (δ + 2)(δ + 3) < (δ + 3)2.

We can solve (δ + 3)2 = ε for δ =
√
ε− 3.
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Question: why will my choice δ =
√
ε− 3 fail? The point of this example it to show you that we can make

correct steps and not find our way to a correct choice of δ. Maybe you can repair my argument and find a
better choice for δ.

Sometimes we are called upon to calculate a limit which has an arbitrary limit point. In the example below
the limit point is denoted by ”a”. We must make arguments which hold for all possible values of a since no
particular restriction on a is offered.

Example 3.2.9. Problem: prove limx→a(3x+ 2) = 3a+ 2 directly by the definition of the limit.

Preparatory calculations: We need to show that |x− a| < δ implies |f(x)−L| < ε for f(x) = 3x+ 2 and
L = 3a+ 2 and a particular choice of δ. Consider then

|f(x)− L| = |3x+ 2− (3a+ 2)| = |3(x− a)| = 3|x− a| < 3δ = ε.

So, we should choose δ = ε/3 since ε > 0 it is clear that δ = ε/3 > 0. In view of these calculations we are
ready to state the proof.

Proof: Let ε > 0 and choose δ = ε/3. Suppose x ∈ R such that 0 < |x− a| < δ. Observe that

|3x+ 2− (3a+ 2)| = |3(x− a)| = 3|x− a| < 3δ = ε.

Thus 0 < |x− a| < δ implies |3x+ 2− (3a+ 2)| < ε and it follows by the definition of the limit that
limx→a(3x+ 2) = 3a+ 2. �

The preceding example was no harder with arbitrary a then it was with a = 2 in Example 3.2.3. In contrast,
we’ll have to think a bit more in the next example. The arguments given in Example 3.2.7 will need some
tweaking.

Example 3.2.10. Problem: prove limx→xo |x| = |xo| directly by the definition of the limit.

Preparatory calculations: We need to show that |x − xo| < δ implies |f(x) − L| < ε for f(x) = |x|
and L = |xo| and a particular choice of δ. I find that ||x| − |xo|| is best covered by forcing δ < 1 for
convenience: notice that δ < 1 and the assumption 0 < |x− xo| < δ yields −1 < −δ < x− xo < δ < 1 hence
xo − 1 < x < xo + 1. Before we were able to conclude that x is positive so |x| = x, but xo = −2 is possible
now and in that case x < 0. We need to break-up into cases:

1. if xo ≥ 1 then xo − 1 ≥ 0 and 0 ≤ xo − 1 < x < xo + 1 yields x ≥ 0 hence |x| = x

2. if xo ≤ −1 then xo + 1 ≤ 0 then xo − 1 < x ≤ xo + 1 < 0 yields x ≤ 0 hence |x| = −x

3. if −1 < xo < 1 then xo − 1 < 0 whereas 0 < x0 + 1 thus xo − 1 < x < xo + 1 has no solutions since
we cannot have both x > 0 and x < 0. In this case we cannot assume δ < 1. Apparently some other
argument is needed here.

Case (1.)(assume xo ≥ 1) follows the same pattern as in Example 3.2.7, we can simply use δ = min(1, ε)
and as xo − 1 ≥ 0 and 0 ≤ xo − 1 < x < xo + 1 yields x ≥ 0 hence |x| = x therefore we’ll find
||x| − |xo|| = |x− xo| < δ < ε.

Case (2.)(assume xo ≤ −1) also follows a similar argument. Use δ = min(1, ε) again and note xo + 1 ≤ 0
then xo − 1 < x ≤ xo + 1 ≤ 0 yields x ≤ 0 hence |x| = −x therefore we’ll find ||x| − |xo|| = | − x− (−xo)| =
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|x− xo| < δ < ε.

Case (3.)(assume −1 < xo < 1) left to reader.

Proof: partly left to reader, I’ll cover cases 1 and 2. Suppose |xo| ≥ 1. Let ε > 0 and choose
δ = min(1, ε). Suppose x ∈ R and 0 < |x − xo| < δ. Since |xo| ≥ 1 it follows that either xo ≥ 1 or
xo ≤ −1. We treat each case separately:

1. if xo ≥ 1 then |xo| = xo. Notice that δ ≤ 1 and the assumption 0 < |x − xo| < δ yields
−1 < −δ < x − xo < δ < 1 hence xo − 1 < x < xo + 1 and as 0 ≤ x0 − 1 we find 0 ≤ x so
|x| = x. Thus,

||x| − |xo|| = |x− xo| < δ ≤ ε.

2. if xo ≤ −1 then |xo| = −xo. Notice that δ ≤ 1 and the assumption 0 < |x − xo| < δ yields
−1 < −δ < x − xo < δ < 1 hence xo − 1 < x < xo + 1 and as x0 + 1 ≤ 0 we find x ≤ 0 so
|x| = −x. Thus,

||x| − |xo|| = | − x− (−xo)| = |x− xo| < δ ≤ ε.

Therefore we have shown in the case |xo| < 1 that for each ε > 0 we can choose δ > 0 such that
0 < |x−xo| < δ implies ||x|−|xo|| < ε and it follows by the definition of the limit that limx→a |x| = xo.
�

3.2.2 one-sided limits

If you examine the definition of limit in the preceding section you’ll notice it doesn’t make much sense for
boundary points of the dom(f). We say p ∈ R is a boundary point of dom(f) iff every deleted open
interval centered at p intersects points in R − dom(f) and dom(f). In other words, boundary points are
positioned so that they are close to points both inside and outside dom(f). We can define one-sided limits
at boundary points.

Definition 3.2.11. limit

Let f be a function and a, L ∈ R. We say that f(x) → L as x → a+ iff for each ε > 0 there exists
δ > 0 such that for all x ∈ R with a < x < a + δ it follows |f(x) − L| < ε. In the case that the
condition above is met we say that the right limit exists and denote this by

lim
x→a+

f(x) = L.

Likewise, we say that f(x) → L as x → a− iff for each ε > 0 there exists δ > 0 such that for all
x ∈ R with a − δ < x < a it follows |f(x) − L| < ε. In the case that the condition above is met we
say that the left limit exists and denote this by

lim
x→a−

f(x) = L.

The logic is very similar to the two-sided examples. I’ll just do this example.
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Example 3.2.12. Problem: prove limx→1+(
√
x− 1) = 0 directly by the definition of the limit.

Preparatory calculations: We need to show that 1 < x < 1 + δ implies |f(x)− L| < ε for f(x) =
√
x− 1

and L = 0 and a particular choice of δ. Consider then

|f(x)− L| = |
√
x− 1− 0| = |

√
x− 1| =

√
|x− 1|.

where we used 1 < x < 1 + δ to deduce 0 < x− 1 hence |x− 1| = x− 1. We should choose δ = ε2.

Proof: Let ε > 0 and choose δ = ε2. Suppose x ∈ R such that 0 < x− 1 < δ. Observe that

|
√
x− 1| =

√
|x− 1| <

√
δ =
√
ε2 = ε.

Thus 0 < x− 1 < δ implies |
√
x− 1| < ε and it follows by the definition of the right-sided limit that

limx→1+

√
x− 1 = 0. �

Notice that f(x) =
√
x− 1 has implicit domain dom(f) = [1,∞) and x = 1 is the boundary point of the

domain. We could not consider a two-sided limit at one because the function is not real-valued for x < 1.

Proposition 3.2.13. two-sided limit holds iff both left and right limits hold.

Let f : dom(f) ⊆ R → R be a function and suppose a ∈ dom(f) is not a boundary point so both
the left and right limits of f can be defined at a.

lim
x→a

f(x) = L ⇔
{

lim
x→a+

f(x) = L and lim
x→a−

f(x) = L

}

Proof: to prove ⇔ we must show both ⇒ and ⇐.

(⇒) Begin by assuming limx→a f(x) = L then for each ε > 0 there exists δ > 0 such that 0 < |x − a| < δ
implies |f(x)− L| < ε. Note for each ε > 0 that if 0 < x− a < δ it follows 0 < |x− a| < δ so |f(x)− L| < ε
hence limx→a+ f(x) = L. Likewise, note for each ε > 0 that if −δ < x− a < 0 it follows 0 < |x− a| < δ so
|f(x)− L| < ε hence limx→a− f(x) = L.

(⇐) We assume that both limx→a+ f(x) = L and limx→a− f(x) = L. Let ε > 0 and choose δ = min(δ+, δ−)
where we use the givens to choose δ+, δ− > 0 such that

1. 0 < x− a < δ+ implies |f(x)− L| < ε,

2. −δ− < x− a < 0 implies |f(x)− L| < ε

Therefore, if x ∈ R such that 0 < |x−a| < δ ≤ δ+, δ− then either 0 < x−a < δ < δ+ or −δ− < −δ < x−a < 0
so by (1.) or (2.) it follows |f(x)−L| < ε. Therefore, the two-sided limit exists and f(x)→ L as x→ a. �.

Half the reason I include this proof is to get the math majors thinking about how to unfold the logic of the
symbol ⇔.



3.2. DEFINITION OF THE LIMIT 81

Example 3.2.14. Problem: prove limx→0
1
x /∈ R directly by the definition of the limit.

Preparatory calculations: think about it. What do we need to show to show it is impossible for any real
number to be the limit of 1

x as x → 0?. By the proposition we just proved it would suffice to show that the
right-limit failed to exist no matter what our choice of L is. Let’s proceed from that angle. We want to show
that limx→0+

1
x cannot be a real number. The natural thing to try here is contradiction, we suppose that

there does exist L ∈ R such that limx→0+
1
x = L and then we hunt for something insane. Once we find the

insanity we see that believing in the existence of L ∈ R is madness so we can safely assume L /∈ R. This is
the outline of the logic. Let’s get into the details:

Proof: assume that L ∈ R such that 1
x → L as x → 0+. This means that for each ε > 0 there

exists δ > 0 such that 0 < x < δ implies | 1x − L| < ε. We seek a contradiction, suppose ε = L
and let δ > 0 be some number such that all x ∈ R satisfying 0 < x < δ force | 1x − L| < ε. Define

xo = min( 1
2(L+ε) ,

δ
2 ) thus xo ≤ 1

2(L+ε and xo < δ. Clearly 0 < xo < δ so it follows that

−ε < 1

xo
− L < ε

and as ε = L we add ε to find 0 < 1
xo

< 2ε. On the other hand, we have constructed xo to satisfy

the inequality xo ≤ 1
2(L+ε) = 1

4ε thus 1
xo
≥ 4ε. But, this is a contradiction since we cannot have both

1
xo
< 2ε and 1

xo
≥ 4ε. Therefore, be proof by contradiction, there does not exist such an L ∈ R and

we conclude that the limx→0+
1
x does not exist, hence limx→0

1
x does not exist. These limits diverge.

�

If you’re wondering how I thought of the argument in the last example then perhaps the following picture
will help you understand why I chose xo as I did. In fact, the picture is what I used to think of the proof.
Pictures are often helpful, you ought not forget that graphing can be a powerful tool for analysis.
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3.2.3 divergent limits

Definition 3.2.15. limit

Let f be a function and a ∈ R. We say that f(x) → ∞ as x → a iff for each M > 0 there exists
δ > 0 such that f(x) > M whenever 0 < |x− a| < δ. In the case that the condition above is met we
say that the limit diverges to ∞ and denote this by

lim
x→a

f(x) =∞.

If for each M > 0 there exists δ > 0 such that f(x) > M whenever a < x < a + δ then we say
f(x)→∞ as x→ a+.
Likewise, if for each M > 0 there exists δ > 0 such that f(x) > M whenever a− δ < x < a then we
say f(x)→∞ as x→ a−.

The definitions of f(x)→ −∞ as x→ a or x→ a± are very similar we just replace the condition f(x) > M
with f(x) < N for N < 0. It is also interesting that the proposition given in the last section also applies in
this context:

Proposition 3.2.16. two-sided limit diverges to ±∞ iff both left and right limits diverge to ±∞.

lim
x→a

f(x) = ±∞ ⇔
{

lim
x→a+

f(x) = ±∞ and lim
x→a−

f(x) = ±∞
}

The proof is similar to that given in the last section, the details are left to the reader. Notice that the
notation ± is meant to denote case-wise logic. I mean to state that either both limits are +∞ or both limits
are −∞ if they are to match the two-sided limit.

One satisfying aspect of carefully defining divergent limits is that we can give a concrete definition of a vertical
asymptote. In fact, we should pause and note that we now have a non-graphical method of distinguishing
between vertical asymptotes, holes in the graph and jump-discontinuities of a function. All three can arise
from formulas which fail if evaluated at the point in question. The concept of a limit helps us to carefully
distinguish what algebra alone cannot hope to detect.

Definition 3.2.17. vertical asymptotes (VA), holes and jumps.

Let f be a function and a ∈ R.

1. We say that f has a vertical asymptote x = a iff either of the left or right limits diverge to
±∞. That is, x = a is a VA iff limx→a± f(x) = ±∞.

2. We say that f has a hole in the graph at (a, L) iff a /∈ dom(f) and limx→a f(x) = L

3. We say that f has a finite jump-discontinuity at x = a iff both the left and right limits of
f(x) exist and do not agree; limx→a+ f(x) = L+ ∈ R and limx→a− f(x) = L− and L+ 6= L−.



3.2. DEFINITION OF THE LIMIT 83

Example 3.2.18. Problem: prove limx→0+
1
x =∞..

Preparatory calculations: we need to find δ such that M > 1
x for all x ∈ R such that 0 < x < δ. Note

M > 1
x implies 1

M < x. Looks like δ = 1
2M will do nicely.

Proof: suppose M > 0 and let δ = 1
2M . If 0 < x < δ = 1

2M then 1
x > 2M > M . Therefore, for

each M > 0 there exists δ > 0 such that 1
x > M whenever 0 < x < δ. It follows by definition that

limx→0+
1
x =∞. �

We learned in Example 3.2.14 this limit does not exist in R. Now we have shown that it actually diverges
to ∞. Notice that ∞ /∈ R, rather, ∞ is simply a notation to indicate a function has a particular behavior at
a point.

Remark 3.2.19.

Another concept of infinity is discussed in the study of cardnality. Intuitively speaking the card-
nality of a set describes the size of the set. For example, S = {1, 2, 3} has cardnality 3. The natural
numbers have cardnality ℵo which is infinite. Then the real numbers are even larger, the cardnality
of R is called the continuum c. Some authors denote the continuum by c = ℵ1 and it does make
sense to say that ℵo < c. However, the idea that the continuum is the next infinity past ℵo is called
the continuum hypothesis.

Here are three other cases we might encounter:

1. the left graph has f(x) → 0 as x → 0− whereas the right limit fails to exist due to oscillation to the
right of zero.

2. the middle has f(x)→∞ as x→ 0− whereas the f(x)→ 0 as x→ 0+.

3. the right graph has f(x) → 0 as x → 0− and also f(x) → 0 as x → 0+. In fact, f(x) → 0 as x → 0
since both the left and right limits agree.

Don’t mistake this short list for a complete list of possible types of limits. There possibilities are too numerous
to list. Generally, we just have to think.

Problems

Problem 3.2.1. Prove that limx→3(2x− 1) = 5.

Problem 3.2.2. Prove that limx→−2(4− 6x) = 16.
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Problem 3.2.3. Suppose δ ≤ 1 and |x+ 3| < δ. Find M1,M2 such that M1 < 3x+ 7 < M2.

Problem 3.2.4. Suppose δ ≤ 1 and |x− 2| < δ. Find M1,M2 such that M1 < x2 + x− 6 < M2.

Problem 3.2.5. Suppose δ ≤ 1 and |x+ 2| < δ. Find M1,M2 such that M1 <
2

x+3 < M2.

Problem 3.2.6. Suppose δ ≤ 1 and |x− 3| < δ. Find M1,M2 such that M1 < x3 + 2 < M2.

Problem 3.2.7. Prove that limx→−2(2x2 + 3x+ 1) = 3.

Problem 3.2.8. Prove that limx→3(x2 + 3x− 17) = 1.

Problem 3.2.9. Prove that limx→2
1
x = 1

2 .

Problem 3.2.10. Prove that

lim
x→4

1

x2 − 3
=

1

13
.
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3.3 continuity and limit laws

The definition of the limit is important, however, if the only way to calculate limits was with direct ε, δ
arguments then I doubt the concept of a limit would enjoy much interest from the mathematical community.
The properties we discover in this section go to show that the definition given in the last section was the
proper, natural definition.

You were probably told that a continuous function was one for which the graph could be drawn without
lifting the pencil. There are no vertical asymptotes, jump-discontinuities or holes in the graph of a continuous
function. We are now able to give a precise definition:

Definition 3.3.1. continuity at a point, on a set, and for a function.

Suppose f : dom(f) ⊆ R → R and U ⊆ dom(f). We say that f is continuous at a ∈ int(U) iff
limx→a f(x) = f(a). If a ∈ U is a boundary point of U such that [a, a+ ε) ⊂ U for some ε > 0 then
we say f is continuous at a iff limx→a+ f(x) = f(a). Likewise, if a ∈ U is a boundary point of U
such that (a− ε, a] ⊂ U for some ε > 0 then we say f is continuous at a iff limx→a− f(x) = f(a).
If f is continuous for each a ∈ U and U ⊆ dom(f) then we say that f is continuous on U . Moreover,
if f is continuous on dom(f) then we say that f is a continuous function.

I should caution you that it is often the case that you want to affix the qualifier connected to the domain of
the function to to avoid jumps in the graph. Technically, this definition does allow for jumps in the graph if
the domain is not connected4.

Proposition 3.3.2. additivity of the limit.

Let a ∈ R. Suppose f, g are functions and limx→a f(x) = Lf and limx→a g(x) = Lg then

lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x).

Proof: we are given that limx→a f(x) = Lf and limx→a g(x) = Lg. Let ε > 0, because of the given limits
for f and g, we can find δf , δg > 0 such that |f(x)− Lf | < ε/2 whenever x ∈ Bδf (a)o and |g(x)− Lg| < ε/2
whenever x ∈ Bδg (a)o. We would like for both conditions to hold at once so we choose δ = min(δf , δg).
Suppose then x ∈ R and 0 < |x − a| < δ it follows that |f(x) − Lf | < ε/2 and |g(x) − Lg| < ε/2. Consider
that

|f(x) + g(x)− (Lf + Lg)| = |f(x)− Lf + g(x)− Lg| ≤ |f(x)− Lf |+ |g(x)− Lg| < ε/2 + ε/2 = ε.

Therefore, by the definition of the limit, limx→a[f(x) + g(x)] = limx→a f(x) + limx→a g(x). �.

Corollary 3.3.3. sum of continuous functions is continuous.

If dom(f) = dom(g) and f, g are continuous functions then f + g is a continuous function.

A ”corollary” to a proposition is simply a fact which is so connected to the proposition that it follows with
almost no proof. The proof of this corollary follows immediately once you see continuity gives that Lf = f(a)
and Lg = g(a).

4in particular, if the domain is just a set of disconnected points then this definition says the function is continuous
by default.
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Proposition 3.3.4. homogeneity of the limit.

Let a, c ∈ R. Suppose f is a function and limx→a f(x) = L then

lim
x→a

cf(x) = c lim
x→a

f(x).

Proof: we are given that limx→a f(x) = L.
First, suppose c 6= 0. Let ε > 0 and choose δ > 0 such that |f(x)− L| < ε/|c| whenever 0 < |x− a| < δ. We
can choose such a δ because ε/|c| > 0 and limx→a f(x) = L means we can choose a small enough nbhd of a
to obtain values for f(x) as close as we wish to L ( in this case we wish the values to be within ε/|c|-units.
Suppose that x ∈ R such that 0 < |x− a| < δ,

|cf(x)− cL| = |c(f(x)− L)| = |c||f(x)− L| < |c|(ε/|c|) = ε.

Therefore, by the definition of the limit, if c 6= 0 then limx→a cf(x) = c limx→a f(x).
Second, consider the case c = 0. Let ε > 0 and note that cf(x) = 0 for all x ∈ dom(f). Choose5 δ = 1 and
suppose 0 < |x− a| < δ. Note

|cf(x)− cL| = |0− 0| = 0 < ε.

Hence, if c = 0 then limx→a cf(x) = c limx→a f(x). Therefore the theorem holds true for all possible values
of c ∈ R. �

I often collectively refer to the previous two theorems as the linearity of the limit. In calculus we will learn
that most major constructions obey the linearity rules.

Corollary 3.3.5. constant multiple of continuous function is continuous.

If f is a continuous function then cf is also continuous.

Proof: since f is continuous limx→a f(x) = f(a) for each a ∈ U then by the homogeneity of the limit,
limx→a cf(x) = cf(a). Therefore, cf is continuous at each point in its domain. �

Proposition 3.3.6. limit of composites.

Suppose f and g are functions such that limx→a f(x) = L1 and limy→L1 g(y) = L2 then
limx→a g(f(x)) = L2.

Proof: let ε > 0 and choose δ > 0 such that if 0 < |x− a| < δ then |f(x)− L1| < δ2 where δ2 > 0 is small
enough to force |g(y) − L2| < ε for all y ∈ R such that 0 < |y − L1| < δ2. We can choose δ2 > 0 as above
because we were given that limy→L1

g(y) = L2 and we can choose δ > 0 to force |f(x) − L1| < δ2 because
we were also given that limx→a f(x) = L1. Suppose that x ∈ R such that 0 < |x− a| < δ and observe that
|g(f(x))− L2| < ε. Therefore, by the definition of the limit, limx→a g(f(x)) = L2. �

I was tempted to relabel the proposition above ”limit of composites(sometimes)”. The term ”sometimes”
might be included to encourage the reader to think about cases other than the one covered by this proposition.
For example, if one of the factors in the product has a divergent limit is this proposition true? More generally,

5Note that any choice of δ > 0 will suffice in this trivial case, I use 1 for no particular reason. You could just as
well make δ = 42.
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can this proposition be extended to the case that the one or more of the factors has a limit which does not
exist? In any event, we should always be mindful of what presuppositions are made in the statement of some
theorem.

Corollary 3.3.7. composite of continuous functions is continuous.

If f ◦ g is well-defined and f and g are continuous functions then f ◦ g is a continuous function.

Proof: Note that continuity of g yields limx→a g(x) = g(a). Since f ◦ g is well-defined I know g(a) ∈ dom(f)
hence limy→g(a) f(y) = f(g(a)). By the preceding proposition limx→a(f ◦ g)(x) = f(g(a)) thus f ◦ g is a
continuous function since this holds for each point in the domain of f ◦ g. �

Proposition 3.3.8. limit of product is product of limits.

Let a ∈ R. Suppose f, g are functions and limx→a f(x) = Lf ∈ R and limx→a g(x) = Lg ∈ R then

lim
x→a

[f(x)g(x)] =

(
lim
x→a

f(x)

)(
lim
x→a

g(x)

)
.

Proof: Consider that we wish to find δ > 0 that forces x ∈ Bδ(a)o to satisfy

|f(x)g(x)− LfLg| < ε

we have control over |f(x)−Lf | and |g(x)−Lg|. If we can somehow factor these out then we have something
to work with. Add and subtract Lfg(x) towards that goal:

|f(x)g(x)− LfLg| = |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg|
≤ |f(x)− Lf ||g(x)|+ |Lf ||g(x)− Lg|

Very well, most things above are easy to control, however the |g(x)| requires a bit of thought. Not too much
though, since limx→a g(x) = Lg it follows that |g(x)| can be made close to |Lg for a particularly small nbhd
of a. In fact, combining Proposition 3.3.6 and Example 3.2.10 we have a proof that limx→a |g(x)| = |Lg|
(take the outside function to be the absolute value function in the proposition). After a little scratch work
I found the following argument:

Let ε > 0, observe that since limx→a |g(x)| = |Lg|, limx→a g(x) = Lg and limx→a |f(x)| = |Lf | we can choose
δ|g|, δg, δf > 0 such that x ∈ Bδ|g|(a)o implies |g(x) − |Lg|| < β, x ∈ Bδg (a)o implies |g(x) − Lg| < β and
x ∈ Bδf (a)o implies |f(x)− Lf | < β. Simply choose δ = min(δ|g|, δf , δg) to obtain that x ∈ Bδ(a)o implies
|f(x)− Lf |, |g(x)− Lg|, |g(x)− |Lg|| < β for any β > 0. I propose we choose δ > 0 such that

β =
−(|Lf |+ |Lg|) +

√
(|Lf |+ |Lg|)2 + 4ε

2
.

I leave it to the reader to convince themself that β > 0. Suppose that x ∈ Bδ(a)o then,

|f(x)g(x)− LfLg| = |f(x)g(x)− Lfg(x) + Lfg(x)− LfLg| added zero

≤ |f(x)− Lf ||g(x)|+ |Lf ||g(x)− Lg| triangle inequality

≤ β|g(x)|+ |Lf |β construction of δ

≤ β(|Lg|+ β) + |Lf |β note |g(x)| < |Lg|+ β

= β2 + (|Lf |+ |Lg|)β
= ε
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note β2 + (|Lf |+ |Lg|)β− ε = 0 has solution β =
−(|Lf |+|Lg|)+

√
(|Lf |+|Lg|)2+4ε

2 then solve for ε to understand
the last step above. To summarize, we have shown for each ε > 0 that there exists a δ > 0 such that
x ∈ Bδ(a)o implies |f(x)g(x)− LfLg| < ε. The proposition follows. �

The proof given above can be shortened by a few clever moves. See Apostle for another way to attack the
proof. The proof given in Appendix F of Stewart’s Calculus is similar to the proof I gave here.

Corollary 3.3.9. product of continuous functions is continuous.

If dom(f) = dom(g) and f, g are continuous functions then fg is a continuous function.

Proof: Note that continuity of f and g yields limx→a f(x) = f(a) and limx→a g(x) = g(a) respective. By
the preceding proposition limx→a f(x)g(x) = limx→a f(x) limx→a g(x) = f(a)g(a) = (fg)(a) thus fg is a
continuous function since this holds for each point in the domain of fg. �

Proposition 3.3.10. limit of quotient is quotient of limits.

Let a ∈ R. Suppose f, g are functions and limx→a f(x) = Lf ∈ R and limx→a g(x) = Lg 6= 0 ∈ R
with Lg 6= 0 then

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
.

Proof: note that if we show that limy→b
1
y = 1

b then the proposition follows since h(x) = 1
g(x) is the composite

of g and the reciprocal function and f(x)h(x) = f(x)
g(x) and we already proved the product of existent limits it

the limit of the product. I leave the proof that limy→b
1
y = 1

b as a problem in your homework6 . �

Corollary 3.3.11. quotient of continuous functions is continuous.

If dom(f) = dom(g) and f, g are continuous functions then f
g is a continuous function on connected

subsets of dom(g)− {x ∈ R | g(x) = 0}.

Proof: Note that continuity of f and g yields limx→a f(x) = f(a) and limx→a g(x) = g(a) respective. If
g(a) 6= 0 then By the preceding proposition

lim
x→a

f(x)

g(x)
=

limx→a f(x)

limx→a g(x)
=
f(a)

g(a)
=

(
f

g

)
(a)

thus f
g is a continuous function on each connected subset of dom( fg ) since this holds for each point in the

domain of f
g . �

Beyond these rules you will find a number of other ”limit laws” in various texts. In one way or another they
boil down to proving a particular function has a natural limit then you combine that data together with
the composite limit law. So, to complete our catalog of basic limit math we ought to calculate limits of the
elementary functions.

6Stewart has a self-contained proof in Appendix F for the proof of Law 5. You might be able to twist his argument
to do this homework problem.
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Proposition 3.3.12. limit of constant is the constant.

Let a, c ∈ R, limx→a c = c.

Proof: let ε > 0 choose δ = 2 and note 0 < |x − a| < δ implies |c − c| = |0| = 0 < ε. Therefore, by the
definition of the limit, limx→a c = c. �.

Hopefully at this point you know how to prove the following corollary.

Corollary 3.3.13. constant functions are continuous.

If dom(f) is connected and f(x) = c for all x ∈ dom(f) then f is a continuous function.

Proposition 3.3.14. limit identity function returns the limit point.

Let a ∈ R, limx→a x = a.

Proof: let ε > 0 choose δ = ε and note 0 < |x− a| < δ implies |x− a| < δ = ε. Therefore, by the definition
of the limit, limx→a c = c. �.

The function id(x) = x is called the identity function because it returns an output of x which is identical
to its input x. Also, g ◦ id = g, so it behaves like the number 1 which is the multiplicative identity for R.
Again, given the proposition above the following corollary is obvious:

Corollary 3.3.15. constant functions are continuous.

The identity function f(x) = x is a continuous function.

Naturally, the restriction of the identity function to any connected subset of R is also continuous. Moving
on,

Proposition 3.3.16. power function limit ( for powers n ∈ N).

Let a ∈ R and n ∈ N, limx→a x
n = an.

Proof: whenever we want to show something is true for arbitrary n ∈ N we use a proof method called
induction. The way it works is that we have to show the statement is true for n = 1, which we already
proved in our last theorem. Then we must show that if the statement is true for n ∈ N then it is also true for
n+ 1. If we can make that ”induction step” then proof by mathematical induction applies and the theorem
is valid for all n ∈ N. You can look at the appendix on induction if you want to see more about induction
for inductions sake. Let’s assume this theorem holds for n ∈ N then limx→a x

n = an. Consider the (n + 1)
case,

lim
x→a

xn+1 = lim
x→a

xnx =

(
lim
x→a

xn
)(

lim
x→a

x

)
= ana = an+1

where I used the product of limits theorem and the identity function limit theorem once more. We find the
statement true for n implies it is likewise true for n+ 1 hence the theorem is true for all n ∈ N by proof by
mathematical induction. �
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Corollary 3.3.17. continuity of integer power functions.

Let n ∈ Z, a power function f(x) = xn is continuous at each point in the interior of its domain.

Proof: notice that dom(xn) = R if n ≥ 0 whereas dom(xn) = (−∞, 0) ∪ (0,∞) if n < 0. In the case n ∈ N
we have n > 0 and the proposition preceding this coro. gives limx→a x

n = an hence f(x) = xn is continuous
on R. In contrast, if n < 0 then −n > 0 thus f(x) = xn = 1

x−n is the quotient of continuous functions thus
f is continuous on (−∞, 0) and (0,∞). �

Proposition 3.3.18. root function limit ( power function with power 1/n for n ∈ N).

Let a ∈ R with a > 0 and n ∈ N, limx→a
n
√
x = n

√
a.

Proof: Let ε > 0 and choose δ = min(a/2, ε n
√
a). Suppose x ∈ Bδ(a)o then we have 0 < |x− a| < δ hence

0 < a−δ < x < a+δ. Note that our construction of δ insures that δ ≤ a/2 < a hence 0 < a−δ. Continuing,

| n
√
x− n
√
a| =

∣∣∣∣ x− a
n
√
x+ n
√
a

∣∣∣∣ =
|x− a|
n
√
x+ n
√
a
<
|x− a|

n
√
a

<
δ
n
√
a
≤ ε n
√
a

n
√
a

= ε.

To summarize, for each ε > 0 we have shown there exists δ > 0 such that 0 < |x−a| < δ implies | n
√
x− n
√
a| < ε

hence limx→a
n
√
x = n

√
a. �

For n = 2k ∈ 2N an even power we can consider right limits at a = 0 and a argument similar to the one
offered above will prove 2k

√
x→ 0 as x→ 0+. However, for an even power the root function is not real-valued

to the left of the origin so the double sided limit at zero does not exist. In contrast, the proposition above
could be extended for all a ∈ R if it is the case that n = 2k + 1 ∈ 2N + 1 is an odd power. Moreover,
given the limit law about composite limits and our previous work on the reciprocal function we can prove
the following:

Proposition 3.3.19. rational power limit ( power function with power m/n for m,n ∈ N).

Let a ∈ R with a > 0 and n ∈ N, limx→a x
m
n = a

m
n .

Notice that fractional powers are problematic for negative numbers. If you agree that 1
3 = 1

2
2
3 then you

should ask yourself what domain would you assign f(x) = x
1
3 ? What about g(x) = x

1
2

2
3 ? What about

h(x) = (
√
x)

2
3 ? I would argue that dom(f) = R whereas dom(h) = [0,∞). But, the only difference between

these formulas is that I applied the exponent law ast = (as)t. My point? Laws of exponents presuppose a
positive base a. In fact, h and f are different functions because the ”law” I used was incorrect for the base
considered. Another good example of laws of exponents breaking down is the following:

−1 =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1

oops. Exponential functions for negative bases are meaningful from the viewpoint of complex variables,
however it comes at the cost of losing the function property. For example, (−1)

1
2 = {i,−i} where i is the

imaginary unit classically denoted
√
−1 = i. Enough about that, I’m just trying to make you aware of some

boundaries in our thinking about exponents. Hopefully you’ll get a chance to take Math 331 sometime soon
and all the mysteries of complex arithmetic will become clear.

From this point we could go on and prove dozens of propositions about limits of your favorite algebraic
functions. Let me summarize: if you can plug in the limit point and avoid division by zero or an even
root of a negative number then the formula of the function gives the output of the limit by simple function
evaluation. In other words:
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Theorem 3.3.20. continuity of algebraic functions.

Let f(x) be defined by a finite number of algebraic operations (possibly including addition, multipli-
cation, division, taking integer or fractional roots) then f is continuous at each point in the interior
of its domain.

I think we’ve seen enough detail in this direction so we now turn to limits of sine and cosine.

Proposition 3.3.21. limits of sine and cosine.

Let a ∈ R, limx→a sin(x) = sin(a) and limx→a cos(x) = cos(a).

Proof: in your homework you will prove that if 0 ≤ |x| ≤ π/2 then |sin(x)| ≤ |x|. To begin this proof we
show that limx→0 sin(x) = sin(0) = 0.

Let ε > 0 and choose δ = min(ε, π/4). Suppose that x ∈ R such that 0 < |x− 0| < δ. Since δ ≤ π/4 < π/2
your homework gives us the result |sin(x) − 0| = | sin(x)| < |x| < δ ≤ ε. Therefore, for each ε > 0 we have
shown there exists δ > 0 such that 0 < |x− 0| < δ implies | sin(x)− 0| < ε hence limx→0 sin(x) = 0.

lim
x→0

cos(x) = lim
x→0

[1− 2 sin2(x/2)] trig. identity

= lim
x→0

1− 2 lim
x→0

sin(x/2) lim
x→0

sin(x/2) limit laws

= 1− 2 sin( lim
x→0

x/2) sin( lim
x→0

x/2) composition limit law

= 1− 2 sin(1
2 lim
x→0

x) sin( 1
2 lim
x→0

x) homogeneity limit law

= 1− 2 sin(0) sin(0) limit of identity function

= 1. definition of sine function

Lemma 3.3.22. substitution of limiting variable.

lim
x→a

f(x) ∈ R ⇔ lim
h→0

f(a+ h). ∈ R

Proof of lemma: suppose limx→a f(x) = L2 ∈ R. Let g(h) = a+h and note g(h)→ a as h→ 0. Therefore,
limh→0 f ◦ g(h) = limh→0 f(a+ h) = L2 by the limit of composites law.
Conversely, suppose limh→0 f(a+ h) = L2 ∈ R. Let p(h) = f(a+ h) hence limh→0 p(h) = L2. Furthermore,
define q(x) = x− a. Observe that q(x)→ 0 as x→ a. Consider then

lim
x→a

f(x) = lim
x→a

f(a+ x− a) = lim
x→a

f(a+ q(x)) = lim
x→a

p(q(x)) = L2

where the last step again uses the limit composition law7 O

7the upside-down triangle indicates the proof of the lemma is complete however the proposition’s proof is still
unfinished. The method of proof we just used here is called a ”biconditional proof”. To prove ⇔ we proved ⇒ and
⇐.
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Finally, using the facts already proven together with the adding angle formulas suffices to complete the proof:

lim
x→a

cos(x) = lim
h→0

cos(a+ h)

= lim
h→0

cos(a) cos(h)− sin(a) sin(h)

= cos(a) lim
h→0

cos(h)− sin(a) lim
h→0

sin(h)

= cos(a).

I leave the proof that limx→a sin(x) = sin(a) as a homework problem8. This completes the proof of proposi-
tion 3.3.21. �

Remark 3.3.23.

It is sometimes quite annoying how difficult it is to prove something as graphically obvious as the
preceding proposition. Of course the sine and cosine function have limits which are nothing more
than the sine or cosine function evaluated at the limit point. Make no mistake, the preceding proof
was not superfluous, if we skip it then something is missing. We’re laying a foundation currently.
Once it’s built then we we’ll just use it.

In our lexicon of basic functions there are two things we have yet to cover in this section:

1. exponential functions

2. inverse functions

Once we have the exponential function and the inverse function then we can pretty much complete our list
of basic limits. For example, f(x) = xπ = eπ ln(x) can be taken as the definition of xπ for x > 0. Currently
we have only covered fractional power functions.

Proposition 3.3.24. limit of exponential function.

Let b > 0, limx→a b
x = ba.

Proof: We begin by proving limx→0 2x = 1. Let ε > 0 and choose δ = log2(1 + ε). Note that 1 + ε > 1
hence log2(1 + ε) > 0. Suppose that x ∈ R such that 0 < |x| < δ, it follows that

− log2(1 + ε) = log2

(
1

1 + ε

)
< x < log2(1 + ε)

but surely9 x < y implies 2x < 2y thus
1

1 + ε
< 2x < 1 + ε

subtracting one from each inequality yields,

1

1 + ε
− 1 < 2x − 1 < ε

Note that 1
1+ε − 1 = − ε

1+ε > −ε thus −ε < 2x− 1 < ε which is equivalent to |2x− 1| < ε. Hence, 0 < |x| < δ
implies |2x − 1| < ε. Therefore, limx→0 2x = 1.

8it should be easy if you understand the argument we just made for cosine here!
9admitably there is a gap here, I invite the reader to supply a proof
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To cover other bases than 2 we can use the identity bx = 2log2(bx) = 2log2(b)x for any b > 0. Since logb(2) is a
constant we can deduce that log2(b)x→ 0 as x→ 0. Moreover, using the composition of limits proposition
we find that bx = 2log2(b)x → 1 as x→ 0. Thus, limx→0 b

x = 1.

The laws of exponents complete the proof for limit points other than zero:

lim
h→0

(ba+h) = lim
h→0

(babh) = ba lim
h→0

bh = ba.

Then by Lemma 3.3.22, limx→a(bx) = ba. �

The use of 2x was simply a choice on my part. We could just as well have used the identity xp = 3x log3(p) to
drive the proof. The interesting thing about this proof is that in retrospect we can replace the proof for the
root function, reciprocal function, identity function and natural number power function with this one proof.

Proposition 3.3.25. continuous injections are strictly monotonic.

If U is connected and f : U → V is continuous then f is 1-1 iff f is either strictly increasing or
strictly decreasing on U .

Remark 3.3.26.

You can skip the proof of this proposition until later. It would be better to read this after you read
the section on the intermediate value theorem. I’m leaving it here because I aim to state an important
theorem at the end of this section which is not possible without the last couple propositions in this
section.

Proof: if we drop the condition of continuity then we could jump from increasing to decreasing on different
components of U . However, continuity should keep f from jumping so if f is increasing on part of U it
should continue to increase over the whole set. This is not a proof, rather just an argument for plausibility.
The proof is somewhat technical but the key is the intermediate value theorem (IVT). Forgive me if we don’t
prove the IVT just yet.

Suppose f : U → V is continuous and strictly increasing or decreasing. We have shown before that strict
monotonacity implies injectivity. See prop. 2.7.5.

Conversely, suppose f : (a, b) → (c, d) is continuous and 1-1. We seek to show that f is either increasing
or decreasing. Suppose f is strictly increasing on the connected subsets Uj ⊆ U for j = 1, 2, . . . . Likewise,
suppose f is strictly decreasing on connected subsets Vk ⊆ U for k = 1, 2, . . . . The union of sets Uj and Vk
for all j, k should yield U . Of particular interest are the points which are on the edge between Uj and Vk.
Suppose in particular that U, V are two subsets such that U ∩ V = {zo} and U is to the left of V on the
number line. I continue to use the notation U indicates strictly increasing and V strict decrease of f . We
can show that f is not 1-1 if there exists such a point. We choose sets small enough such that [wo, zo] ⊂ U
whereas [zo, qo] ⊂ V . By construction wo < zo and as f increases on U it follows that f(wo) < f(zo). By the
continuity of f the intermediate value theorem yields [f(wo), f(zo)] ⊆ f [wo, zo]. Likewise, by construction
zo < qo and as f decreases on V it follows f(zo) > f(qo). Again, by the continuity of f the intermediate value
theorem yields [f(qo), f(zo)] ⊆ f [zo, qo]. Suppose that p ∈ [f(wo), f(zo)] ∩ [f(qo), f(zo)] such that p 6= f(zo)
then we have both p < f(zo) and p > f(xo) which is a contradiction. It follows that we either have disjoint
intervals of increase and decrease or we have just one interval of strict increase or decrease. Our assumption



94 CHAPTER 3. LIMITS

that U is connected rules out the possibility of disjoint subsets whose union cover the whole set. Therefore,
we have shown that f is either strictly increasing or strictly decreasing. �

Proposition 3.3.27. invertible continuous function have continuous inverses.

Let U, V ⊆ R, if f : U → V is continuous with inverse f−1 : V → U then f−1 is continuous.

Proof: we seek to show f−1 is continuous at yo ∈ V . Let ε > 0 and suppose xo = f−1(yo), choose
δ = min

[
f(xo)− f(xo − ε), f(xo + ε)− f(xo)

]
and suppose 0 < |y − yo| < δ. Note that

y < yo + δ ≤ f(xo) + [f(xo + ε)− f(xo)] = f(xo + ε)

Then on the other side,

y > yo − δ ≥ f(xo)− [f(xo − ε)− f(xo)] = f(xo − ε)

Putting together the inequalities above yields f(xo− ε) < y < f(xo+ ε). Since f is continuous and invertible
it follows from the previous proposition (and ultimately the IVT) that f−1 and f are either strictly increasing
or strictly decreasing on U . Suppose f−1 is strictly increasing then it follows:

xo − ε < f−1(y) < xo + ε ⇒ |f−1(y)− xo| < ε ⇒ |f−1(y)− f−1(yo)| < ε.

If f−1 is strictly decreasing then we again find that 0 < |y − yo| < δ implies |f−1(y) − yo| < ε. Therefore,
limy→yo f

−1(y) = f−1(yo) for each yo ∈ V hence f−1 is continuous. �

Proposition 3.3.28. continuity of power function for arbitrary power.

Let p ∈ R and a > 0 then limx→a x
p = ap.

Proof: the following identity could be used as the definition if p > 0, xp = 2p log2(x). By prop. 3.3.27 we
know logarithms are continuous since each logarithm is inverse function of an exponential function which we
already proved was continuous. Note that,

lim
x→a

(xp) = lim
x→a

(2p log2(x)) = 2limx→a(p log2(x)) = 2p log2(a) = ap. �

Remark 3.3.29.

The beauty of the logarithm is that it changes products to sums: log(fg) = log(f) + log(g). Note
that fg = 2log2(fg) = 2log2(f)+log2(g). If we knew that f(x) = log2(x) was a continuous function
then we would have a proof that the product of two continuous function is continuous since it is
built using the composite and the sum of continuous functions. In other words, continuity of the
logarithm yields an easy proof of that the product of continuous functions is continuous. A similar
proof is possible for the quotient. However, these proofs are not as general as the one already offered
since we can only make these arguments for functions with positive outputs.

The functions listed in chapter 2 are called elementary functions. Perhaps the best summary of this section
is as follows:
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Proposition 3.3.30. most elementary functions are continuous on the interior of their domain.

Polynomial, rational, power, trigonometric, hyperbolic as well as their respective local inverse func-
tions are continuous on the interior of their respective domains.

I’m sometimes tempted to say that all functions whose formula is constructed from finitely many elementary
functions are continuous at each point in the interior of their domains. However, I think a clever student
could find a counter-example. This much is almost always true:

Remark 3.3.31.

If a function is defined at the limit point then the value of the function at the limit point is simply
given by function evaluation. In other words, functions are usually continuous.

Problems

Problem 3.3.1. Show that if a 6= 0 then limx→a
1
x = 1

a .

Problem 3.3.2. Prove that if 0 ≤ |x| ≤ π/2 then |sin(x)| ≤ |x|. (hint: use the diagram in Section 4.5).

Problem 3.3.3. hope to add more problems in the future..
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3.4 limit calculation

In the preceding section we made painstaking arguments to prove most of the basic theorems about limits.
Fortunately we will not usually find that level of detail is necessary to calculate a given limit. In fact, the
point of this section is that we don’t have to use the definition to calculate most limits. Rigorous arguments
can be built via combining the propositions of the preceding section together with some crafty algebraic
techniques. Non-rigorous, intuitive arguments are also possible through either numerical calculation (table
of values) or by leading term analysis. Which argument is best depends on your audience.

Example 3.4.1. In each of the limits below the limit point is on the interior of the domain of the elementary
function so we can just evaluate to calculate the limit.

i.) limx→3(sin(x)) = sin(3)

ii.) limx→−2

(√
x2−3
x+5

)
=

√
4−3
−2+5 = 1

3

iii.) limh→0(sin−1(h)) = sin−1(0) = 0

iv.) limx→a(x3 + 3x2 − x+ 3) = a3 + 3a2 − a+ 3.

We did not even need to look at a graph to calculate these limits. Of course it is also possible to evaluate
most limits via a graph or a table of values, but those methods are less reliable.

Example 3.4.2.

limx→0(sin(x) + cos(ex)) = limx→0(sin(x)) + limx→0(cos(ex)), (additivity.)

= sin(0) + cos(limx→0 e
x), (continuity of sine and cosine.)

= sin(0) + cos(e0) (continuity of exponential.)

= cos(1).

I may ask you to calculate a particular limit a particular way. However, if I don’t say one way or the other
you are free to think for yourself. Sometimes a graph is a good solution, sometimes a table of values is
convenient, sometimes we can use propositions from section 3.3. The example below illustrates the table of
values idea.

Example 3.4.3. The following table of values indicates that limx→0+
sin(x)
x = 1

Now the limit consider in Example 3.4.3 is not nearly as obvious as the limits in Example 3.4.1. I should
mention that the limit has indeterminant form of type 0/0 since both sin(x) and x tend to zero as x goes to



3.4. LIMIT CALCULATION 97

zero. One of main goals in this chapter is to learn how to analyze indeterminant forms. Thus far we have
only encountered case (1.) of the definition below. The reason these are called ”indeterminant forms” is
simply that the value of the limit with an indeterminant form is not known without further analysis. Limits
with these forms might diverge to infinity, simply not exist or even converge to any number of finite values.

Definition 3.4.4. indeterminant forms.

1. we say lim f
g is of ”type 0

0” iff lim f = 0 and lim g = 0

2. we say lim f
g is of ”type ∞∞” iff lim f = ±∞ and lim g = ±∞

3. we say lim fg is of ”type 0∞” iff lim f = 0 and lim g = ±∞

4. we say lim f − g is of ”type ∞−∞” iff lim f =∞ and lim g =∞

Now it is time for us to test our algebraic might. The examples given in this section illustrate all the basic
algebra tricks to unravel undetermined limits. I like to say we do algebra to determine the limit. The limits
are not just decoration, many times an expression with the limit is correct while the same expression without
the limit is incorrect. On the other hand we should not write the limit if we do not need it in the end. How
do we know when and when not? We practice.

Example 3.4.5. Calculate limx→−2

(
x+2

x2+3x+2

)
. Notice that this limit is of type 0/0 since the numerator

and denominator are both zero when take the limit at -2.

lim
x→−2

(
x+ 2

x2 + 3x+ 2

)
= lim

x→−2

(
x+ 2

(x+ 2)(x+ 1)

)
= lim

x→−2

(
1

x+ 1

)
=

1

−2 + 1

= −1.

The second step where we cancelled (x + 2) with (x + 2) is valid inside the limit because we do not have
x = −2 in the limit. We get very close, but that is the difference, this is not division by zero.

Example 3.4.6. The limit below is also type 0/0 to begin with

lim
x→0

(
3x+ x2

x3 + 2x2 + x

)
= lim

x→0

(
x(x+ 3)

x(x2 + 2x+ 1)

)
= lim

x→0

(
(x+ 3)

(x2 + 2x+ 1)

)
=

0 + 3

0 + 0 + 1

= 3.

I reiterate, we can cancel the x/x inside the limit because x 6= 0 within the limit. Again we see that factoring
and cancellation has allowed us to modify the limit so that we could reasonably plug in the limit point in the
simplified limit. This is often the goal.
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We observe that algebraic manipulations may change an undetermined form to a determined form which
does not violate the laws of real arithmetic when you plug in the limit point.

Example 3.4.7. This limit also has form 0/0 to begin.

lim
θ→0

(
tan(θ)

sin(θ)

)
= lim

θ→0

(
sin(θ)

cos(θ)

1

sin(θ)

)
= lim

θ→0

(
1

cos(θ)

)
=

1

cos(0)

= 1.

Example 3.4.8. The first step is a time-honored trick, it is nothing more than multiplication by 1. So if
you encounter a similar problem try a similar trick.

lim
h→0

(√
4 + h− 2

h

)
= lim

h→0

(
(
√

4 + h− 2)(
√

4 + h+ 2)

h(
√

4 + h+ 2)

)
= lim

h→0

(
4 + h+ 2

√
4 + h− 2

√
4 + h− 4

h(
√

4 + h+ 2)

)
= lim

h→0

(
h

h(
√

4 + h+ 2)

)
= lim

h→0

(
1√

4 + h+ 2

)
=

1√
4 + 2

=
1

4
.

Example 3.4.9. Here the trick is to combine the fractions in the numerator by finding the common denom-
inator of 4x

lim
x→−4

( 1
4 + 1

x

4 + x

)
= lim

x→−4

( x + 4
4x

4 + x

)
= lim

x→−4

(
x+ 4

4x
· 1

4 + x

)
= lim

x→−4

(
1

4x

)
=
−1

16
.
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Example 3.4.10.

lim
x→3

(
(x− 3) cos(x− 3)

x(x2 − 5x+ 6)

)
= lim

x→3

(
(x− 3) cos(x− 3)

x(x− 3)(x− 2)

)
= lim

x→3

(
cos(x− 3)

x(x− 2)

)
=

cos(3− 3)

3(3− 2)

=
1

3
.

Example 3.4.11. Piecewise defined functions can require a bit more care. Sometimes we need to look at
one-sided limits.

lim
x→0

[
|x|
x

]
= ?

recall that the notation |x| is the absolute value of x, it is the distance from zero to x on the number line.

|x| =

{
−x : x < 0.

x : x ≥ 0.

In the left limit x→ 0− we have x < 0 so |x| = −x thus,

lim
x→0−

[
|x|
x

]
= lim

x→0−

[
−x
x

]
= lim

x→0−

[
−1

1

]
= −1.

In the right limit x→ 0+ we have x > 0 so |x| = x thus,

lim
x→0−

[
|x|
x

]
= lim

x→0−

[
x

x

]
= lim

x→0−

[
1

1

]
= 1.

Consequently we find that the left and right limits disagree hence limx→0

[
|x|
x

]
= d.n.e..

The function we just looked at in preceding is a step function. They are very important to engineering since
they model switching. The graph y = |x|/x looks like a single stair step,
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Example 3.4.12. Good to know your trig. identities:

lim
x→0

(
sin(x)

sin(2x) + sin(x)

)
= lim

x→0

(
sin(x)

2 sin(x) cos(x) + sin(x)

)
= lim

x→0

(
1

2 cos(x) + 1

)
=

1

3
.

Example 3.4.13. This limit below is not indeterminant, the type ∞/0 will diverge. The question is merely
how does it diverge? It becomes clear this limit is positive after we simplify,

lim
x→0

(
cot(x)

tan(x)

)
= lim

x→0

(
1

cot2(x)

)
= ∞.

Example 3.4.14. This limit below is not indeterminant, the type ∞/0 will diverge. The question is merely
how does it diverge?

lim
x→0−

(
ex + 3

sin(x)

)
= −∞.

I knew it diverged to −∞ since the values of the function are negative for inputs just a little to the left of
zero.

Example 3.4.15. Initially we face the indeterminant form ∞/∞:

lim
x→0+

(x+ 1√
x

1√
x2+x

)
= lim

x→0+

([
x+

1√
x

]√
x2 + x

)
= lim

x→0+

([
x+

1√
x

]√
x(x+ 1)

)
= lim

x→0+

([
x+

1√
x

]√
x
√
x+ 1

)
= lim

x→0+

([
x
√
x+ 1

]√
x+ 1

)
=
[
0 + 1

]√
0 + 1

= 1.

Remark 3.4.16.

Intuition is very important. One of the main reasons to do a lot of homework is that it refines and
sharpens your intuition. Whenever a person with experience is faced with a limit problem the usual
first step we make is to decide what we think the answer ought to be. Then we supply algebra to
confirm our suspicion. If the function is complicated I often plug in points really close to the limit
point to get a feel for the problem. This approach will fail for a certain class of sarcastically crafted
pathological problems but it is successful for almost all problems assigned in this introductory course.
My point? You can figure out what the answer is often even when you can’t show your work. This
will earn you some partial credit, but the idea here is not just to find an answer. The steps showing
how the answer is deduced are important. At a minimum you ought to show how indeterminancy is
removed for a given problem. I did that in every example in this section.
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Problems

Problem 3.4.1. hope to add more problems in the future..
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3.5 squeeze theorem

There are limits not easily solved through algebraic trickery. Sometimes the ”Squeeze” or ”Sandwich”
Theorem allows us to calculate the limit.

Proposition 3.5.1. squeeze theorem.

Let f(x) ≤ g(x) ≤ h(x) for all x near a then we find that the limits at a follow the same ordering,

lim
x→a

f(x) ≤ lim
x→a

g(x) ≤ lim
x→a

h(x).

Moreover, if limx→a f(x) = limx→a h(x) = L ∈ R then limx→a f(x) = L.

Proof: Suppose f(x) ≤ g(x) for all x ∈ Bδ1(a)o for some δ1 > 0 and also suppose limx→a f(x) = Lf ∈ R and
limx→a g(x) = Lg ∈ R. We wish to prove that Lf ≤ Lg. Suppose otherwise towards a contradiction. That is,
suppose Lf > Lg. Note that limx→a[g(x)− f(x)] = Lg − Lf by the linearity of the limit. It follows that for
ε = 1

2 (Lf−Lg) > 0 there exists δ2 > 0 such that x ∈ Bδ2(a)o implies |g(x)−f(x)−(Lg−Lf )| < ε = 1
2 (Lf−Lg).

Expanding this inequality we have

−1

2
(Lf − Lg) < g(x)− f(x)− (Lg − Lf ) <

1

2
(Lf − Lg)

adding Lg − Lf yields,

−3

2
(Lf − Lg) < g(x)− f(x) < −1

2
(Lf − Lg) < 0.

Thus, f(x) > g(x) for all x ∈ Bδ2(a)o. But, f(x) ≤ g(x) for all x ∈ Bδ1(a)o so we find a contradiction for
each x ∈ Bδ(a) where δ = min(δ1, δ2). Hence Lf ≤ Lg. The same proof can be applied to g and h thus the
first part of the theorem follows.

Next, we suppose that limx→a f(x) = limx→a h(x) = L ∈ R and f(x) ≤ g(x) ≤ h(x) for all x ∈ Bδ1(a) for
some δ1 > 0. We seek to show that limx→a f(x) = L. Let ε > 0 and choose δ2 > 0 such that |f(x)− L| < ε
and |h(x)− L| < ε for all x ∈ Bδ(a)o. We are free to choose such a δ2 > 0 because the limits of f and h are
given at x = a. Choose δ = min(δ1, δ2) and note that if x ∈ Bδ(a)o then

f(x) ≤ g(x) ≤ h(x)

hence,
f(x)− L ≤ g(x)− L ≤ h(x)− L

but |f(x)− L| < ε and |h(x)− L| < ε imply −ε < f(x)− L and h(x)− L < ε thus

−ε < f(x)− L ≤ g(x)− L ≤ h(x)− L < ε.

Therefore, for each ε > 0 there exists δ > 0 such that x ∈ Bδ(a)o implies |g(x)−L| < ε so limx→a g(x) = L. �

We can think of h(x) as the top slice of the sandwich and f(x) as the bottom slice. The function g(x)
provides the BBQ or peanut butter or whatever you want to put in there.
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Example 3.5.2. Use the squeeze theorem to calculate limx→0( x2 sin( 1
x ) ). Notice that the following in-

equality is suggested by the definition or graph of sine

−1 ≤ sin(θ) ≤ 1

Substitute θ = 1/x and multiply by x2 which is positive if x 6= 0 so the inequality is maintained,

−x2 ≤ x2 sin

(
1

x

)
≤ x2

We identify that f(x) = −x2 and h(x) = x2 sandwich the function g(x) = x2 sin( 1
x ) near x = 0. Moreover,

it is clear that
lim
x→0

( x2 ) = 0 lim
x→0

( −x2 ) = 0.

Therefore, by the squeeze theorem, limx→0( x2 sin( 1
x ) ) = 0. Graphically we can see why this works,

Perhaps, you’re wondering why we could not just use the limit of product proposition lim fg = lim f lim g.
The problem is that since the limit of sin( 1

x ) at zero does not exist due to wild oscillation at zero. Therefore,
we have no right to apply the limit proposition.

Example 3.5.3. Suppose that all we know about the function f(x) is that it is sandwiched by 1 ≤ f(x) ≤
x2 + 2x+ 2 for all x. Can we calculate the limit of f(x) as x→ −1? Well, notice that

lim
x→−1

(1) = 1 lim
x→−1

(x2 + 2x+ 2) = 1.

Therefore, by the Squeeze Theorem, limx→−1 f(x) = 1.

Problems

Problem 3.5.1. hope to add more problems in the future..
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3.6 intermediate value theorem

The proof of the intermediate value theorem is given at the conclusion of this section.

Theorem 3.6.1. intermediate value theorem (IVT).

Suppose that f is continuous on an interval [a, b] with f(a) 6= f(b) and let N be a number such that
N is between f(a) and f(b) then there exists c ∈ (a, b) such that f(c) = N .

Notice that this theorem only tells us that there exists a number c, it does not actually tell us how to find
that number. This theorem is quite believable if you think about it graphically. Essentially it says that if you
draw a horizontal line y = N between the lines y = f(a) and y = f(b) then since the function is continuous
we must cross the line y = N at some point. Remember that the graph of a continuous function has no
jumps in it so we cannot possibly avoid the line y = N . Let me draw the situation for the case f(a) < f(b),

The IVT can be used for an indirect manner to locate the zeros of continuous functions. The theorem
motivates an iterative process of divide and conquer to find a zero of the function. Essentially the point is
this, if a continuous function changes from positive to negative or vice-versa on some interval then it must
be zero at least one place on that interval. This observation suggests we should guess where the function is
zero and then look for smaller and smaller intervals where the function has a sign change. We can just keep
zooming in further and further and getting closer and closer to the zero. Perhaps you have already used the
IVT without realizing it when you looked for an intersection point on your graphing calculator.

Example 3.6.2. Show that there exists a zero of the polynomial P (x) = 4x3 − 6x2 + 3x− 2 on the interval
[1, 2]. Observe that,

P (1) = 4− 6 + 3− 2 = −1 < 0

P (2) = 32− 24 + 6− 2 = 12 > 0

We know that P is continuous everywhere and clearly P (1) < 0 < P (2) so by the IVT we find there exists
some point c ∈ (1, 2) such that P (c) = 0. To find the precise value of c would require more work.

Example 3.6.3. Does tan−1(x) = − cos(x) for some x ∈ (−2, 2) ? Let’s rephrase the question. Does
f(x) = tan−1(x) + cos(x) = 0 for some x ∈ (−2, 2)? This is the same question, but now we can use the IVT
plus the sign change idea. Observe,

f(−2) = tan−1(−2) + cos(−2) = −1.52

f(2) = tan−1(2) + cos(2) = 0.691

(3.1)
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Obviously f(−2) < 0 < f(2) and both tan−1(x) and cos(x) are continuous everywhere so by the IVT there
is some c ∈ (−2, 2) such that f(c) = 0. Clearly c has tan−1(c) = − cos(c). If you examine the graphs of
y = tan−1(x) and y = − cos(x) you will find that they intersect at c = −0.82 (approximately).

Remark 3.6.4. root finder for continuous functions.

Let me take a moment to write an algorithm to find roots. Suppose we are given a continuous
function f , we wish to find c such that f(c) = 0.

1. Guess that f is zero on some interval (ao, bo).

2. Calculate f(ao) and f(bo) if they have opposite signs go on to 3.) otherwise return to 1.) and
guess differently.

3. Pick c1 ∈ (ao, bo) and calculate f(c1).

4. If the sign of f(c1) matches f(ao) then say a1 = c1 and let b1 = bo. If the sign of f(c1)
matches f(bo) then say b1 = c1 and let a1 = ao

5. Pick c2 ∈ (a1, b1) and calculate f(c2).

6. If the sign of f(c2) matches f(a1) then say a2 = c2 and let b2 = b1. If the sign of f(c2)
matches f(b1) then say b2 = c2 and let a2 = a1

...
...

...
...

And so on... If we ever found f(ck) = 0 then we would stop there. Otherwise, we can repeat this
process until the subinterval (ak, bk) is so small that we know the zero to some desired accuracy.
Say you wanted to know 2 decimals with certainty, if you did the iteration until the length of the
interval (ak, bk) was 0.001 then you would be more than certain. Of course, a careful analysis of
this algorithm and its limitations would also need to consider rounding errors and the inherent
limitations of machine arithmetic. Beware the machine ε.

3.6.1 a deeper look at the intermediate value theorem

Proposition 3.6.5.

Let f be continuous at c such that f(c) 6= 0 then there exists δ > 0 such that either f(x) > 0 or
f(x) < 0 for all x ∈ (c− δ, c+ δ).

Proof: we are given that limx→c f(x) = f(a) 6= 0.

1.) Assume that f(a) > 0. Choose ε = f(a)
2 and use existence of the limit limx→c f(x) = f(a) to select

δ > 0 such that 0 < |x− c| < δ implies |f(x)− f(a)| < f(a)
2 hence − f(a)

2 < f(x)− f(a) < f(a)
2 . Adding f(a)

across the inequality yields 0 < f(a)
2 < f(x) < 3f(a)

2 .

2.) If f(a) < 0 then we can choose ε = − f(a)
2 > 0 and select δ > 0 such that 0 < |x − c| < δ implies

|f(x)− f(a)| < − f(a)
2 hence f(a)

2 < f(x)− f(a) < − f(a)
2 . It follows that 3f(a)

2 < f(x) < f(a)
2 < 0.

The proposition follows. �
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Bolzano understood there was a gap in the arguments of the founders of calculus. Often, theorems like those
stated in this section would merely be claimed without proof. The work of Bolzano and others like him
ultimately gave rise to the careful rigorous study of the real numbers and more generally the study of real
analysis 10

Proposition 3.6.5 is clearly extended to sets which have boundary points. If we know a function is continuous
on [a, b) and f(a) 6= 0 then we can find δ > 0 such that f([a, a+ δ)) > 0. ( This is needed in the proof below
in the special case that c = a and a similar comment applies to c = b.)

Theorem 3.6.6. Bolzano’s theorem

Let f be continuous on [a.b] such that f(a)f(b) < 0 then there exists c ∈ (a, b) such that f(c) = 0.

Proof: suppose f(a) < f(b) then f(a)f(b) < 0 implies f(a) < 0 and f(b) > 0. We can use axiom A11 for
the heart of this proof. Our goal is to find a nonempty subset S ⊆ R which has an upper bound. Axiom
A11 will then provides the existence of the least upper bound. We should like to construct a set which has
the property desired in this theorem. Define S = {x ∈ [a, b] | f(x) < 0}. Notice that a ∈ S since f(a) < 0
thus S 6= ∅. Moreover, it is clear that x ≤ b for all x ∈ S thus S is bounded above. Axiom A11 states that
there exists a least upper bound c ∈ S. To say c is the least upper bound means that any other upperbound
of S is larger than c.

We now seek to show that f(c) = 0. Consider that there exist three possibilities:

1. if f(c) < 0 then the continuous function f has f(c) 6= 0 so by prop. 3.6.5 there exists δ > 0 such that
x ∈ (c− δ, c+ δ)∩ [a, b] implies f(x) < 0. However, this implies there is a value x ∈ [c, c+ δ) such that
f(x) < 0 and x > c which means x is in S and is larger than the upper bound c. Therefore, c is not
an upper bound of S. Obviously this is a contradiction therefore f(c) ≮ 0.

2. if f(c) > 0 then the continuous function f has f(c) 6= 0 so by prop. 3.6.5 there exists δ > 0 such
that x ∈ (c − δ, c + δ) ∩ [a, b] implies f(x) > 0. However, this implies that all values x ∈ (c − δ, c]
have f(x) > 0 and thus x /∈ S which means x = c− δ/2 < c is an upper bound of S which is smaller
than the least upper bound c. Therefore, c is not the least upper bound of S. Obviously this is a
contradiction therefore f(c) ≯ 0.

3. if f(c) = 0 then no contradiction is found. The theorem follows. �

My proof here essentially follows Apostol’s argument, however I suspect this argument in one form or another
can be found in many serious calculus texts. With Bolzano’s theorem settled we can prove the IVT without
much difficulty.

(IVT): Suppose that f is continuous on an interval [a, b] with f(a) 6= f(b) and let N be a number
such that N is between f(a) and f(b) then there exists c ∈ (a, b) such that f(c) = N .

Proof: let N be as described above and define g(x) = f(x) − N . Note that g is clearly continuous.
Suppose that f(a) < f(b) then we must have f(a) < N < f(b) which gives f(a) − N ≤ 0 ≤ f(b) − N
hence g(a) < 0 < g(b). Applying Bolzano’s theorem to g gives c ∈ (a, b) such that g(c) = 0. But,
g(c) = f(c)−N = 0 therefore f(c) = N . If f(a) > f(b) then a similar argument applies. �.

10the Bolzano-Weierstrauss theorem is one of the central theorems of real analysis, in 1817 Bolzano used it to
prove the IVT. It states every bounded sequence contains a convergent subsequence. Sequences can also be used to
formulate limits and continuity. Sequential convergence is dealt with properly in Math 431 at LU.
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Problems

Problem 3.6.1. hope to add more problems in the future..
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End of Chapter Problems

Problem 3.6.2. hope to add more problems in the future..
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Chapter 4

differential calculus

We will define the derivative of a function in this chapter. The need for a derivative arises naturally within
the study of the motion of physical bodies.

You are probably already familiar with the average velocity of a body. For example, if a car travels 100 miles
in two hours then it has an average velocity of 50 mph. That same care may not have traveled the same
velocity the whole time though, sometimes it might have gone 70mph at the bottom of a hill, or perhaps
0mph at a stoplight. Well, this concept I just employed used the idea of instantaneous velocity. It is the
velocity measured with respect to an instant of time.

How small is an ”instant”? Well, it’s pretty small. You might imagine that this ”instant” is some agreed
small unit of time. That is not the case, there is no natural standard for all processes. I suppose you could
argue with the policeman that your average rate of speed to school was 30mph (taking the ”instant” to be
10 minutes for me) but I bet all he’ll care about is the 40mph you did through the 20mph school zone. The
”velocity” of a car as measured by radar is essentially the instantaneous velocity. It is the time rate change
in distance for an arbitrarily small increment of time. It seems intuitive to want such a description of motion,
I have a hard time thinking about how we would describe motion without instantaneous velocity. But, then
I have ( we all have ) grown up under the influence of Isaac Newton’s ideas about motion. Certainly he
was not alone in the development of these ideas, Galileo, Kepler and a host of others also pioneered these
concepts which we take for granted these days. Long story short, differential calculus was first motivated
by the study of motion. Our goal in this chapter is to give a precise meaning to such nebulous phrases as
”instant” of time. The limits of the previous chapter will aid us in this description.

Generally, the derivative of a function describes how the function changes with respect to its independent
variable. When the independent variable is time then it is a time-rate of change. But, that need not always
be the case. I believe that Newton first thought of things changing with respect to time, he had physics on
the brain. In contrast, Leibniz considered more abstract rates of change and the modern approach probably
is closer to his work. We use Leibniz’ notation for the most part. Anyway, I digress as usual.

Let me briefly describe the content of this chapter. We begin by defining tangent lines and infinitesimal
rates of change. Then the derivative as a function is defined and several examples exhibiting the tangent line
construction are given. Next, linearity and the power rule are developed. Breaking from logical minimalism
for the sake of pedagogical efficiency we then find derivatives of exponential, sine and cosine functions. In-
clusion of that material at that point allows us to integrate those important transcendental function in the

111
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later sections of the chapter. Finally, we conclude the chapter by working out the major rules of differential
calculus: the product, quotient and chain rules and their beautiful applications in the techniques of loga-
rithmic and implicit differentiation.

Finally, I cannot overstate the importance of this chapter. The derivative forms the core of the calculus
sequence. And it describes much more than velocity, that is just one application. Basically, if something
changes then a derivative can be used to model it. It’s ubiquitous.

4.1 tangent lines

Let a be a fixed number throughout this discussion. Let h be an number which we allow to vary. Then a
secant line at (a, f(a)) is simply a line which connects (a, f(a)) to another point (a+ h, f(a+ h)) which is
also on the graph of the function. I have pictured a particular secant line below,

You can imagine that as h increases or decreases we will get a different secant line. In fact, there are infinitely
many secant lines. Notice that the slope of the pictured secant line is just the rise over the run, that is

m =
4y
4x

=
f(a+ h)− f(a)

a+ h− a
=
f(a+ h)− f(a)

h
.

This may look familiar to you. it is the so-called ”difference quotient” some of you may have seen in your
precalculus course. We should also realize the slope of the secant line gives the average rate of change of
y with respect to x.

Now imagine that h→ 0. As we take that limit we will get the tangent line which just kisses the function
at the point (a, f(a))1. Moreover, we should notice that in the limit as h→ 0 the average rate of change is
replaced with the instantaneous rate of change of y with respect to x, this is precisely what the slope
of the tangent line means from an analytical standpoint.

The interpretations of y and x are too numerous to list. However, the most important case is arguably y = s
(position) and x = t (time). In that context the slope of a secant line between (t1, s1) and (t1, s1) is called
the average velocity; vavg = 4s

4t = s2−s1
t2−t1 whereas the slope of the tangent line is called the instantaneous

velocity. Let me be precise,

1it may however intersect the graph elsewhere depending on how the graph curves away from the point of tangency
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Definition 4.1.1. tangent line.

The tangent line to y = f(x) is the line that passes through (a, f(a)) and has the slope

m = f ′(a) = lim
h→0

(
f(a+ h)− f(a)

h

)
if the limit exists, otherwise we say there is no tangent line at that point. If there is a tangent line
through (a, f(a)) to the curve y = f(x) then the equation for the tangent line is

y = f(a) +m(x− a).

the notation f ′(a) draws our attention to the fact that the quantity m is also ”the derivative at a
point”. We define the slope of a function at a point to be the derivative of the function at that
point (when it exists).

Continuing our discussion about velocity, the instantaneous velocity at time t for position s is thus defined,

v(t) = lim
h→0

(
s(t+ h)− s(t)

h

)
.

No qualifier is placed on v(t) because it is understood from here on out that unless qualified the ”velocity” is
the ”instantaneous velocity”. The necessity of this concept led Newton and others interested in the physics
of motion to the mathematics of calculus. The interplay between mathematics and physics continues to this
day. Anyway, let’s get back to the math...

The tangent line is unique when it exists because limits are unique when they exist. There are other
equivalent ways of looking at the limit which gives the slope of the tangent line. For examples:

I reiterate, the slope of the tangent line characterizes how quickly y is changing with respect to x. The slope
of the tangent line gives us the instantaneous rate of change of y with respect to x.
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Example 4.1.2. Find the slope of the parabolic function f(x) = x2 at x = 1. In other words, find the slope
of the graph y = f(x) = x2 when x = 1 . We defined the slope of the graph at a point to be the slope of the
tangent line at that point. So we calculate,

f ′(1) = lim
h→0

(
f(1 + h)− f(1)

h

)
= lim
h→0

(
(1 + h)2 − 12

h

)
= lim
h→0

(
1 + 2h+ h2 − 1

h

)
= lim
h→0

(
2h+ h2

h

)
= lim
h→0

(2 + h)

= 2.

I have listed more steps than I typically do for such limits. Notice the critical thing here is that once the 1
cancels with -1 then all terms have a factor of h so it cancels with the h in the denominator. We see that the
slope of the parabola at the point (1, 1) is f ′(0) = 2. Moreover, we can even find the equation of the tangent
line follows,

y = f(1) + f ′(0)(x− 1) = 1 + 2(x− 1) = 2x− 1.

It is possible to find the tangent line approximately through drawing a careful graph and using a ruler and
graph paper. But, our results are not approximate. We found the exact result using calculus. Here is what it
looks like,

You may be wondering, when does the derivative at a point fail to exist? What sort of function would make
that happen? The example that follows illustrates one culprit, a ”kink” or ”corner” in the graph. This
means that a function does not have a well-defined slope at a kink or corner in the graph because the left
and right tangents have different slopes (see picture below).

Example 4.1.3. The absolute value function is f(x) = |x|. As we have discussed it is really a piece-wise
defined function. We have

|x| =

{
x x ≥ 0

−x x < 0

It turns out that this function has a kink at zero where it changes from a negative slope to a positive slope.
This means that the difference quotient has different left and right limits at zero. In particular,

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

|h|
h

= lim
h→0−

−h
h

= lim
h→0−

(−1) = −1.
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Notice that we replace |h| with h because in this left limit we allow values to the left of zero on the number
line, those are negative numbers. Similarly,

lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim
h→0+

(1) = 1.

Therefore we can conclude,

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
lim
h→0

|h|
h

= d.n.e.

Geometrically this is evidenced in our inability to pick a unique tangent line at the origin. Which should we
choose, the positive (purple) or the negative (green) sloped tangent line?

Another way the derivative at a point can fail to exist is for the function to have a vertical tangent. A
popular example of that is f(x) =

√
x. If you look at the graph the tangent line is vertical. Vertical lines do

not have a well-defined slope2.
We saw in the previous example that a function can be continuous at a point yet fail to be differentiable at
that same point. In contrast, if a function is differentiable at a point it must be continuous at that point.

Proposition 4.1.4.

If f ′(a) exists for a function f then limx→a f(x) = f(a). In other words, differentiability of f at a
implies continuity of f at a.

Proof: Now, our goal is to show that limh→0 f(a + h) = f(a) since the substitution lemma stated

limh→0 f(a + h) = limx→a f(x). We are given that f ′(a) = limh→0
f(a+h)−f(a)

h and clearly limh→0 h = 0 so
we have two limits which exist. Consider then

0 = lim
h→0

(h) lim
h→0

f(a+ h)− f(a)

h
= lim
h→0

h
f(a+ h)− f(a)

h
= lim
h→0

(f(a+ h)− f(a))

Thus, limh→0(f(a+ h)− f(a)) = 0 and as limh→0 f(a) = f(a) it follows3 that limh→0 f(a+ h) = f(a). �

Notice that the equality above only holds true because we know the limit of the difference quotient exists.
In the case of a function like f(x) = |x| the limit of that product is not necessarily the product of the limits;
remember lim fg = lim f lim g only if both lim f and lim g exist.

2 that is more a deficiency of our current formalism than anything else. If we adopt a parametric viewpoint
then the difference between horizontal and vertical tangents is washed away and much more general curves are easily
described. We defer discussion of parametric curves until later in the calculus sequence. For now we focus on the
special case of functions and graphs.

3 if lim(f + g) = L1 and lim(g) = L2 for some L1, L2 ∈ R then lim(f) = L1 − L2.
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Problems

Problem 4.1.1. hope to add more problems in the future..
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4.2 definition of the derivative function

The derivative of a function f is simply the function f ′ which is defined point-wise by the slope of the tangent
line to the function f at the given point.

Definition 4.2.1. derivative as a function.

If a function f is differentiable at each point in U ⊆ R then we define a new function denoted f ′

which is called the derivative of f . It is defined point-wise by,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
We also may use the notation f ′ = df/dx = df

dx . Let U ⊆ R. When a function is has a derivative f ′

which is continuous on U we say that f ∈ C1(U). If the derivative has a continuous derivative f ′′

on U then we say f ∈ C2(U). If we can take arbitrarily many derivatives which are continuous on
U then we say that f is a smooth function and we denote this by f ∈ C∞(U).

The notation df
dx gives one the idea of taking the infinitesimal change dy and dividing by the infinitesimal

change dx. There are times when it is quite useful to think of dy/dx as the quotient of infinitesimals but
that time is not now. For now the symbol dy/dx is simply a notation to implicit the limiting process we just
defined. Geometrically, it is clear that df/dx should give us a function whose values are the slope of f at
each point where such slope is well-defined. The symbol C1(U) represents a set of functions, each function
in this set is said to be continuously differentiable. There are functions which are differentiable but not
continuously differentiable at a given point.

Example 4.2.2. Suppose f(x) =
√
x. Calculate f ′(x) directly from the definition. By definition,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim
h→0

( √
x+ h−

√
x

h

)
= lim
h→0

( √
x+ h−

√
x

h
·
√
x+ h+

√
x√

x+ h+
√
x

)
= lim
h→0

(
x+ h− x)

h(
√
x+ h+

√
x )

)
= lim
h→0

(
h

h(
√
x+ h+

√
x )

)
= lim
h→0

(
1√

x+ h+
√
x

)
=

1

2
√
x
.

In other notation,
df

dx
=

1

2
√
x

or
d

dx

[√
x

]
=

1

2
√
x
.

The notation d
dx is read ”derivative with respect to x” or often in conversation I’ll just say ”d-d-x of square

root of x minus three is one over two times the square root of x minus three”. I’m sure glad we have algebraic
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language for calculation, good notation is the starting point of much good mathematics. Note that f ′(x) is
continuous on (0,∞) and we may rightly conclude that f ∈ C1(0,∞).

Let me make a few more comments about our calculation: notice that the h is not present in the final answer,
the h is a variable which should go away after we complete the limiting process. Moreover, note that the
difference quotient was an indeterminant form of type 0/0 for most of the calculation. If you think about it
that will almost always be the case for any derivative calculation. For this reason the limit must be defined
carefully. The indeterminant form case is not the exception to the rule, rather it is the primary case of
interest to differential calculus. The purpose of this example is not that you should always calculate from the
definition. I merely include it to illustrate the definition explicitly, the purpose of similar homework problems
is the same. Obviously if you are instructed to calculate from the definition then you must do such, but if
allowed to use properties and power rules then you would be foolish to use the definition. That said, we must
use the definition for now since that’s all we know4.

Example 4.2.3. Suppose f(x) = 1
x2 . Calculate f ′(x) directly from the definition, assume x 6= 0. By

definition,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim
h→0

( 1
x+h −

1
x

h

)

= lim
h→0

( x−(x+h)
x(x+h)

h

)
= lim
h→0

(
−h

hx(x+ h)

)
= lim
h→0

(
−1

x(x+ h)

)
=
−1

x2
.

In other notation,

df

dx
=
−1

x2
or

d

dx

[
1

x

]
=
−1

x2
.

Let’s take a moment to appreciate that the formula above allows us to set-up many different tangent lines
for the graph y = 1

x . For example,

f ′(−2) = −1/9 f ′(−1) = −1 f ′(1) = −1 f ′(2) = −1/4

Tell us the slopes of the tangent lines at (−2,−1/2), (−1,−1), (1, 1) and (2, 1/2) respective. We find tangent
lines:

y = −1

2
− 1

9
(x+ 2), y = −1− (x+ 1), y = 1− (x− 1), y =

1

2
− 1

4
(x− 2)

Here’s how they graph:

4sorry if you remember the ”easy” way from highschool, we have not earned the right to use such short-cut
formulae yet.
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Problems

Problem 4.2.1. hope to add more problems in the future..
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4.3 linearity of the derivative and the power rule

These properties are crucial. Happily they’re also way easier than our previous methods! I begin with
linearity, we then work out the power rule for natural number powers.

Proposition 4.3.1.

The derivative d/dx is a linear operator. If c ∈ R and the functions f and g are differentiable then

d

dx
( cf ) = c

d

dx
( f ) = c

df

dx
d

dx
( f + g ) =

d

dx
( f ) +

d

dx
( g ) =

df

dx
+
dg

dx
.

We also can write f ′(x) = df
dx and

(cf)′(x) = cf ′(x) (f + g)′(x) = f ′(x) + g′(x).

Proof: follows easily from the definition of the derivative. Additivity:

(f + g)′(x) = lim
h→0

(
(f + g)(x+ h)− (f + g)(x)

h

)
= lim
h→0

(
f(x+ h) + g(x+ h)− f(x)− g(x)

h

)
= lim
h→0

(
f(x+ h)− f(x)

h

)
+ lim
h→0

(
g(x+ h)− g(x)

h

)
= f ′(x) + g′(x).

Likewise, homogeneity:

(cf)′(x) = lim
h→0

(
(cf)(x+ h)− (cf)(x)

h

)
= lim
h→0

(
cf(x+ h)− cf(x)

h

)
= c lim

h→0

(
f(x+ h)− f(x)

h

)
= cf ′(x).

While proofs may not excite you, I hope you can see that these are really very simple proofs. We didn’t do
anything except apply the properties of the limit itself ( namely lim(f+g) = lim f+lim g and lim(cf) = c lim f
) to the definition of the derivative for the functions f and g respective. �

Rather than stating the power rule from the outset we will examine a number of cases to suggest the rule.
This will help us get more practice with the definition and perhaps a deeper appreciation for the power rule
itself. In each case I will again emphasize the utility of the d/dx notation.
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4.3.1 derivative of a constant

Suppose f(x) = c for all x ∈ R then calculate,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim
h→0

(
c− c
h

)
= lim
h→0

(0)

= 0.

In operator notation we may write this result as follows:

d

dx

(
c
)

= 0

Here we think of the operator d
dx acting on a constant function to return the zero function.

4.3.2 derivative of identity function

Let f(x) = x for all x ∈ R,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim
h→0

(
x+ h− x

h

)
= lim
h→0

(
h

h

)
= lim
h→0

( 1 )

= 1.

In operator notation we may write this result as follows:

d

dx

(
x
)

= 1

Which also show you that dx
dx = 1 which helps reinforce my claim that thinking of dx as a tiny increment of

x is not totally off base. We ought to have dx cancelling dx. Beware, this sort of thinking is not without
peril.
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4.3.3 derivative of quadratic function

Let f(x) = x2 for all x ∈ R,

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
= lim
h→0

(
(x+ h)2 − x2

h

)
= lim
h→0

(
x2 + 2xh+ h2 − x2

h

)
= lim
h→0

( 2x+ h )

= 2x.

In operator notation we may write this result as follows:

d

dx

(
x2
)

= 2x

4.3.4 derivative of cubic function

Let f(x) = x2 for all x ∈ R,

f ′(x) = lim
h→0

(
(x+ h)3 − x3

h

)
= lim
h→0

(
x3 + 3x2h+ 3xh2 + h3 − x3

h

)
= lim
h→0

( 3x2 + 3xh+ h2 )

= 3x2.

In operator notation we may write this result as follows:

d

dx

(
x3
)

= 3x2

4.3.5 power rule

We should start to notice a pattern here: the derivative always returns a function with one less power than
we put into the derivative. Let’s list them to ponder the pattern,

1. d
dx (1) = d

dx (x0) = 0x0−1 = 0.

2. d
dx (x) = d

dx (x1) = 1x1−1 = x.

3. d
dx (x2) = 2x2−1 = 2x1 = 2x.

4. d
dx (x3) = 3x3−1 = 3x2.

I bet most of you could guess that d
dx (x4) = 4x3 (and you would be correct). We can summarize:
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Proposition 4.3.2. power rule

Suppose n ∈ R then,

d

dx

(
xn
)

= nxn−1.

The proof I give below is for the case that n ∈ N meaning n = 1, 2, 3, . . . (we already proved n = 0, 1/2 and
−1 in previous arguments). We begin by recalling the binomial theorem,

(x+ h)n =

n∑
k=0

(
n

k

)
xn−khk = xn + nxn−1h+

n(n− 1)

2
xn−2h2 + · · ·+ hn.

The symbol
(
n
k

)
≡ n(n−1)(n−2)···(n−k+1)

k(k−1)···3·2·1 is read ”n choose k” due to its application and interpretation in basic

counting theory. They are also called the ”binomial coefficients”. There is a neat construction called Pascal’s
triangle which allows you to calculate the binomial coefficients without use of the formula just stated. If you
look in my college algebra notes you’ll find some examples of how to use Pascal’s triangle to multiply things
like (x+ y)7 quickly.

Proof: of power rule for n ∈ N follows from definition and binomial theorem:

d

dx
( xn ) = lim

h→0

(
(x+ h)n − xn

h

)
= lim
h→0

(
xn + nxn−1h+ n(n−1)

2 xn−1h2 + · · ·+ hn − xn

h

)
= lim
h→0

( nxn−1 +
n(n− 1)

2
xn−1h+ · · ·+ hn−1 )

= nxn−1. �

This proof is no good if n = 1/2 since we have no binomial theorem in that case5. However, we proved in

Example 4.2.2 that d
dx (
√
x) = 1

2
√
x

. In other words, d
dx (x

1
2 ) = 1

2x
1− 1

2 (power rule works). You should also

note we also proved the case n = −1 in Example 4.2.3. In fact, the power rule is still true in the case that
n ∈ R − N 6, we just need another method of proof. I will give the general proof towards the end of this
chapter.

Example 4.3.3. Using the power rule correctly mostly boils down to you having a good grasp of laws of
exponents.

d

dx
(xx4) =

d

dx
(x5) = 5x4

Example 4.3.4. We can use linearity in conjunction with the power rule for added fun,

d

dx

[
3x3

x
+
√

4x

]
= 3

d

dx
(x2) + 2

d

dx
(
√
x) = 3(2x) +

2

2
√
x

= 6x+
1√
x
.

5We will learn in a later calculus course that the binomial expansion has infinitely many terms when n /∈ N.
6for example, d

dy
(yπ+2) = (π + 2)yπ+1 ≈ 5.142y4.142
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Example 4.3.5. Sometimes the independent variable is not ”x”, rather t, or c or even µ

d

dt
( ttt ) =

d

dt
(t3) = 3t2.

d

dc
(c) = 1.

d

dµ
(µk) = kµk−1.

Proposition 4.3.6. extended linearity.

If functions f1, f2, . . . , fn are differentiable and c1, c2, . . . cn are constant then

d

dx

[
c1f1 + c2f2 + · · ·+ cnfn

]
= c1

df1

dx
+ c2

df2

dx
+ · · ·+ cn

dfn
dx

Or, using summation notation,

d

dx

[ n∑
k=1

ckfk

]
=

n∑
k=1

ck
dfk
dx

.

Proof: by induction. Left to reader in homework exercise.

Example 4.3.7.
d

dx
(x+ x2 + 3) =

d

dx
(x) +

d

dx
(x2) +

d

dx
(3) = 1 + 2x.

Or, suppose a, b, c ∈ R then

d

dx
( ax2 +

b

3
x3 − 1

x
+ c3 ) = 2ax+ bx2 +

1

x2
.

Why didn’t I include a 3c2 in the answer above?

Example 4.3.8. We will find other ways to do this one later, but now algebra is our only hope.

d

dx

[
1√
x

( x−
√
x3 ) + x7

]
=

d

dx
(
√
x− x ) + 7x6 =

1

2
√
x
− 1 + 7x6.

Example 4.3.9. What is the slope of the line y = mx+ b at the point (xo,mxo + b)? Consider that,

d

dx
( mx+ b ) = m

dx

dx
+ 0 = m.

We find that the slope of the function f(x) = mx+ b is the same at all points along the line, it is simply m.
This is good news, it verifies that there is no disagreement between our new calculus-based definition of the
slope and the old standard definition we used in algebra and precalculus. Guess what the tangent line to the
line is?

y = f(xo) + f ′(xo)(x− xo) = mxo + b+m(x− xo) = mx+ b.

Of course graphically this is obvious, but it is nice to see the algebra works out.
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Example 4.3.10. What is the slope of y = f(x) = ax2 + bx + c at the point (x, f(x))? Lets calculate the
derivative at x,

f ′(x) =
d

dx
( ax2 + bx+ c ) = 2ax+ b.

We see that a parabola will have different slopes at different points. Where is the slope zero ? Well we can
just set 2ax + b = 0 and solve to find x = −b/2a. If you are familiar with the formulas from algebra for
the vertex of a parabola you’ll recall that h = −b/2a which makes a lot of sense. The vertex will have a
horizontal tangent line.

What is the equation of the tangent line at xo ? The derivative at xo is f ′(xo) = 2axo + b. Therefore, the
equation of the tangent line is

y = f(xo) + f ′(xo)(x− xo)
= ax2

o + bxo + c+ (2axo + b)(x− xo).
(4.1)

Why did I avoid asking you what the tangent line was at (x, f(x)) ? (subtle)

Problems

Problem 4.3.1. hope to add more problems in the future..
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.
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4.4 the exponential function

Transcendental numbers cannot be defined in terms of a solution to an algebraic equation. In contrast, you
could say that

√
2 is not a transcendental number since it is a solution to x2 = 2 ( it turns out

√
2 has a

finite expansion in terms of continued fractions, it is a quadratic irrational). Mathematicians have shown
that there exist infinitely many transcendental numbers, but there are precious few that are familiar to us.
Probably π = 3.1415 . . . is the most famous. Next in popularity to π we find the number e named in honor
of Euler. I can think of at least four seemingly distinct ways of defining e = 2.718 . . . . We choose a definition
which has the advantage of not using any mathematics beyond what we have so far discussed.

Let f(x) = ax for some a > 0, a 6= 1. Lets calculate the derivative of this exponential function, we’ll use this
calculation to define e in a somewhat indirect manner.

d

dx
( ax ) = lim

h→0

(
ax+h − ax

h

)
= lim
h→0

(
axah − ax

h

)
= lim
h→0

(
ax(ah − 1)

h

)
= ax lim

h→0

(
ah − 1

h

)

We will learn that this limit is finite for any a > 0. Thus the derivative of an exponential function is
proportional to the function itself. We can define a = e to be the case where the derivative is equal to the
function.

Definition 4.4.1. Euler’s number; e.

The number e is the real number such that

lim
h→0

(
eh − 1

h

)
= 1.

It is not at all obvious how to calculate that e = 2.718 . . . directly from this definition. This definition
implicitly defines the number e. Notice that the calculation preceding the definition simplifies for this very
special base; if a = e then

d

dx
( ex ) = ex.

The exponential function f(x) = ex = f ′(x) is a very special function, it has the unique property that its
output is the same as the slope of its tangent line at that point. I have pictured a few representative tangents
along with y = ex.
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By the way, I sometimes use the alternate notation ex = exp(x).

Remark 4.4.2.

In case you are curious and impatient I include a list of all the ways to define the exponential function
and the number e in turn:

1. We could define ex to be the function such that d
dx (ex) = ex then the number e would be

defined by the function: ex|x=1 = e1 = e. This is essentially what we did in this section.

2. The following limit is a more direct description of what the value of e is,

e = lim
n→∞

(
1 +

1

n

)n
notice that this limit is type 1∞ and we have yet to discuss the tools to deal with such limits.
Many folks take this as the definition of e, so be warned. It turns out that l’Hopital’s Rule
connects this definition and our definition. (there is another argument in Stewart’s calculus
on page 444 which is closely related). This definition arises naturally in the study of repeated
multiplication, or continuously compounded interest.

3. The natural logarithm f(x) = ln(x) arises in the study of integration in a very special role.
You could define f−1(x) = ex and then e = f−1(1).

4. The exponential could be defined by ex = 1 + x+ 1
2x

2 + 1
3!x

3 + · · · and again we could just
set e = 1 + 1 + 1

2 + 1
3! + · · · , perhaps this is the easiest to find e since with just the terms listed

we get e = 1 + 1 + 0.5 + 0.1̄6 + · · · ≈ 2.66 not too far off the real value e = 2.71 . . . . This
definition probably raises more questions than it answers so we’ll just leave it at that until we
discuss Taylor series.

By the way, the limh→0
ah−1
h is not easily calculated with the methods so far at our disposal. If you could

show me how to calculate this limit by using the definition of e given in this section then I would probably
award you some bonus points.

Problems

Problem 4.4.1. hope to add more problems in the future..
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4.5 derivatives of sine and cosine

There are a few basic nontrivial limits which we need to derive in order to calculate the derivatives of sine
and cosine. To begin we must establish the following for the radian-based sine function:

lim
x→0

(
sin(x)

x

)
= 1.

Observe that if we can prove limx→0+
sin(x)
x = 1 then the double sided limit follows naturally since sine is an

odd function and

lim
x→0−

sin(x)

x
= lim
x→0−

sin(−x)

−x
= lim
y→0+

sin(y)

y

where in the last step we made the substitution y = −x which naturally changes the left-limit of x→ 0− to
the right limit y → 0+. If you require a more formal proof of this substitution rule then you should think
about the composition of limits rule. Composition of limits justifies substitutions like this and others. I’ll

give two arguments which show limx→0+
sin(x)
x = 1. One intuitive, the other with mathematically rigor.

Intuitive Proof: imagine a tiny triangle in the unit circle. In such a case the arclength subtended and the
vertical leg of the triangle are ≈ equal and the limit follows:
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Proof: in the diagram below we consider a triangle inscribed in the unit circle (dotted-red) with angle
θ > 0 as pictured. The arclength subtended is given by s = rθ = θ (bold red). Then the larger triangle has
adjacent side-length of one unit thus tan(θ) = opp

adj solves to yield opp = tan(θ).

Continuing, notice that sin(θ) < θ < tan(θ) = sin(θ)
cos(θ) ⇒ 1 < θ

sin(θ) <
1

cos(θ) ⇒ cos(θ) < sin(θ)
θ < 1. We

proved previously that limθ→0+ cos(θ) = 1 and limθ→0+ 1 = 1 hence be the squeeze theorem it follows that

limθ→0+
sin(θ)
θ = 1. �

Some mathematicians would perceive a gap in the argument above. However, other mathematicians would
accept this sort of minor geometric leap as a reasonable proof step. Rest assured that you can prove the red
arclength is indeed sandwiched between sin(θ) and tan(θ). If you would like to see a more detailed argument
feel free to consult the Appendix in Stewart. I learned the argument above from Dr. Honore Mavinga and
it is found in many calculus texts, it’s better than my initial physicsy argument since it only makes obvious
statements about a finite triangle. The limiting is all handled by the squeeze theorem. In contrast my
physicsy ”proof” selectively ignored certain infinitesimals while emphasizing others.

Next we show that, lim
x→0

(
cos(x)− 1

x

)
= 0 . Observe,

lim
x→0

(
cos(x)− 1

x

)
= lim
x→0

(
cos(x)− 1

x
· cos(x) + 1

cos(x) + 1

)
= lim
x→0

(
cos2(x)− 1

x(cos(x) + 1)

)
= lim
x→0

(
− sin2(x)

x(cos(x) + 1)

)
= lim
x→0

(
sin(x)

x

)
· lim
x→0

(
− sin(x)

cos(x) + 1

)
= 1 · − sin(0)

cos(0) + 1

= 0.
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We now have all the tools we need to derive the derivatives of sine and cosine. I should mention that I
assume you know the ”adding angles” formulas for sine and cosine: sin(a± b) = sin(a) cos(b)± sin(b) cos(a)
and cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b),

d

dx
( sin(x) ) = lim

h→0

(
sin(x+ h)− sin(x)

h

)
= lim
h→0

(
sin(x) cos(h) + sin(h) cos(x)− sin(x)

h

)
= lim
h→0

(
sin(x) · cos(h)− 1

h
+ cos(x) · sin(h)

h

)
= sin(x) · lim

h→0

(
cos(h)− 1

h

)
+ cos(x) · lim

h→0

(
sin(h)

h

)
= sin(x) · 0 + cos(x) · 1
= cos(x).

I think it is interesting that we had to use both of the limits we just found.

d

dx
( cos(x) ) = lim

h→0

(
cos(x+ h)− cos(x)

h

)
= lim
h→0

(
cos(x) cos(h)− sin(h) sin(x)− cos(x)

h

)
= lim
h→0

(
cos(x) · cos(h)− 1

h
− sin(x) · sin(h)

h

)
= cos(x) · lim

h→0

(
cos(h)− 1

h

)
− sin(x) · lim

h→0

(
sin(h)

h

)
= cos(x) · 0 − sin(x) · 1
= − sin(x).

I think you will agree with me that these were harder to derive than the power rule. The neat thing is
that armed with the few basic derivatives we have derived so far we will be able to differentiate just about
anything once we learn a few more tools such as the product, quotient and chain rules. Barring the deriva-
tion of those rules this will be one of the last times we use the definition of the derivative to calculate a
derivative. You see ultimately our goal is to calculate things without doing these tiresome limits. What I
find really interesting is that after we get further into the subject we can make the limits disappear. Now,
don’t misunderstand me here. The limiting concept is important. There are even certain applications where
you don’t even have a formula for the function, all you have is raw data from some experiment. In those sort
of cases you might need to apply the definition directly through some numerical methods. In this course we
are mostly interested with those less interesting problems which allow pen and paper solutions. So-called
analytic problems. Ok, enough philosophy of calculus, let’s get back to work.

To summarize this section so far it’s pretty simple,

Proposition 4.5.1. derivatives of (radian-based) sine and cosine.

d

dx
( sin(x) ) = cos(x)

d

dx
( cos(x) ) = − sin(x)
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The function called ”sine” for degree measure of angles is not the same function as the ”sine” for radian-
measured angle. We can relate them by a simple conversion: sin(θ) = sindegrees(

180θ
π ). For example,

sin(π/2) = sindegrees(90). Even your calculator knows these are different functions, that is why you have to
change modes to clarify if you are using radians or degrees. Let it be understood that in calculus we always
use radian-based sine and cosine.

Let’s examine how this plays out graphically,

I have graphed in red y = f(x) = sin(x) and in green y = f ′(x) = cos(x). Can you see that where the
sine has a horizontal tangent the cosine function is zero? On the other hand whenever sine crosses the
x-axis the cosine function is at either one or minus one. Question, what is the quickest that sine can possi-
bly change? Notice that the slope of the sine function characterizes how quickly the sine function is changing.

The graph below has y = g(x) = cos(x) in red and y = g′(x) = − sin(x) in green.

I hope you see how the derivative and the function are related.

Problems

Problem 4.5.1. hope to add more problems in the future..
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4.6 product rule

It is often claimed by certain students that d
dx (fg) = df

dx
dg
dx but this is almost never the case. Instead, you

should use the product rule.

Proposition 4.6.1. product rule.

Let f and g be differentiable functions then

d

dx
( fg ) =

df

dx
g + f

dg

dx

which can also be written (fg)′ = f ′g + fg′.

Proof: start with the definition of the derivative and then after a sneaky step or two we’ll have it.

(fg)′(x) = lim
h→0

(
(fg)(x+ h)− (fg)(x)

h

)
= lim
h→0

(
f(x+ h)g(x+ h)− f(x)g(x)

h

)
= lim
h→0

(
f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h

)
= lim
h→0

( [
f(x+ h)− f(x)

h

]
· g(x+ h) + f(x) ·

[
g(x+ h)− g(x)

h

] )
= lim
h→0

[
f(x+ h)− f(x)

h

]
· lim
h→0

( g(x+ h) ) + f(x) · lim
h→0

[
g(x+ h)− g(x)

h

]
= f ′(x)g(x) + f(x)g′(x).

I added zero in the third line, a very sneaky move. Then in the next to last step I pulled out f(x) which
is sensible since it does not depend on h. Then in the very last step I used that limh→0 g(x + h) = g(x)
which is true since g is a continuous function. I know g is continuous at x as we were given g′(x) exists and
differentiability at x implies continuity at x for g. �

Example 4.6.2. Lets derive the derivative of x2 a new way,

d

dx
(x2) =

d

dx
(xx) =

dx

dx
x+ x

dx

dx
= 2x.

We derived this fact from the definition before, I think this way is easier. Anyway, I always recommend
knowing more than one way to understand a mathematical truth, it helps when doubt ensues.

Example 4.6.3. Identify that in the problem that follows f(x) = x and g(x) = ex thus by the product rule,

d

dx
(xex) =

dx

dx
ex + x

d(ex)

dx
= ex + xex.

Example 4.6.4. Observe that f(x) = sin(x) and g(x) = cos(x) so by the product rule,

d

dx
(sin(x) cos(x)) =

d(sin(x))

dx
cos(x) + sin(x)

d(cos(x))

dx

= cos2(x)− sin2(x).
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You might wonder what happens if we have a product of three things, suppose that are differentiable then,

d

dx
(fgh) =

d(fg)

dx
h+ fg

dh

dx

=
( df
dx
g + f

dg

dx

)
h+ fg

dh

dx

=
df

dx
gh+ f

dg

dx
h+ fg

dh

dx

so the rule for products of three functions follows from the product rule for two functions. You could likewise
derive that (fghj)′ = f ′ghj + fg′hj + fgh′j + fghj′ by the same logic.

Example 4.6.5.

d

dx
(x2 sin(x)ex) =

d(x2)

dx
sin(x)ex + x2 d(sin(x))

dx
ex + x2 sin(x)

d(ex)

dx

= 2x sin(x)ex + x2 cos(x)ex + x2 sin(x)ex.

Example 4.6.6. You can combine the product rule with linearity,

d

dx
(
√
x+ 3x3ex) =

d

dx
(
√
x) + 3

d

dx
(x3ex)

=
1

2
√
x

+ 3(
d(x3)

dx
ex + x3 d(ex)

dx

=
1

2
√
x

+ 9x2ex + x3ex.

Problems

Problem 4.6.1. hope to add more problems in the future..
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4.7 quotient rule

Proposition 4.7.1. product rule.

Let f and g be differentiable functions with g 6= 0,

d

dx

(
f

g

)
=

df
dxg − f

dg
dx

g2

this is called the quotient rule. In the prime notation,(
f

g

)′
=
f ′g − fg′

g2
.

Proof: This rule actually follows from the product rule. Let Q(x) = f(x)/g(x) then since g(x) 6= 0 it follows
that f(x) = Q(x)g(x). That’s a product so we can use the product rule; f ′ = (Qg)′ = Q′g+Qg′. Solve this
for Q′,

Q′ =
f ′ −Qg′

g
=
f ′ − f

g g
′

g
=
f ′g − fg′

g2
.

But, Q′ = (f/g)′ so the proof is complete. �

Example 4.7.2. We already know the derivatives of sine and cosine, with the help of the quotient rule we
can differentiate the tangent function.

d

dx
(tan(x)) =

d

dx

(
sin(x)

cos(x)

)
=

d
dx (sin(x)) cos(x)− sin(x) d

dx (cos(x))

cos2(x)

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)

= sec2(x).

This is the secant function squared. I expect you to remember this derivative. You are of course free to derive
it if you have time.

Example 4.7.3.

d

dx

(
x3

x2 + 7

)
=

3x2(x2 + 7)− x3(2x)

(x2 + 7)2
=
x4 + 21x2

(x2 + 7)2
.

Example 4.7.4.

d

dx

(
1

3x+ 5

)
=

0(3x+ 5)− 1(3)

(3x+ 5)2
=

−3

(3x+ 5)2
.
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Example 4.7.5. The reciprocal trigonometric functions’ derivatives all follow from the quotient rule,

d

dx
(sec(x)) =

d

dx

(
1

cos(x)

)
=

d
dx (1) cos(x)− 1 d

dx (cos(x))

cos2(x)

=
sin(x)

cos2(x)

=
1

cos(x)

sin(x)

cos(x)

= sec(x) tan(x).

Likewise the derivative of the cosecant follows from the quotient rule

d

dx
(csc(x)) =

d

dx

(
1

sin(x)

)
=

d
dx (1) sin(x)− 1 d

dx (sin(x))

sin2(x)

=
− cos(x)

sin2(x)

= − 1

sin(x)

cos(x)

sin(x)

= − csc(x) cot(x).

Example 4.7.6. the quotient rule is used in conjunction with other rules sometimes, here I use linearity to
start,

d

dx

(
ex +

x+ x2

3− x

)
=

d

dx
(ex) +

d

dx

(
x+ x2

3− x

)
= ex +

d
dx (x+ x2)(3− x)− (x+ x2) d

dx (3− x)

(3− x)2

= ex +
(1 + 2x)(3− x)− (x+ x2)(−1)

(3− x)2

= ex +
3− x+ 6x− 2x2 + x+ x2

x2 − 6x+ 9

= ex +
3 + 6x− x2

x2 − 6x+ 9
.

The last couple lines were just algebraic simplification, the most important thing here was that you understood
how the quotient rule was applied.

Problems

Problem 4.7.1. hope to add more problems in the future..
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.
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4.8 chain rule

If I were to pick a name for this rule it would be the composite function rule because the ”chain rule” actually
just tells us how to differentiate a composite function. Of all the rules so far this one probably requires the
most practice. So be warned. Also, let me warn you about notation.

f ′(x) =
df

dx
=
df

dx
(x) =

df

dx

∣∣∣∣
x

We have suppressed the (x) up to this point, reason being that it was always the same so we’d get tired of
writing the (x) everywhere. Now we will find that we need to evaluate the derivative at things other than
just (x). For example suppose that f(x) = x2 so we have f ′(x) = 2x then

df

dx
(x3 + 7) =

df

dx

∣∣∣∣
(x3+7)

= 2(x3 + 7)

We substituted x3 + 7 in the place of x. I sometimes avoid the notation df
dx (x) because it might be confused

with multiplication by x. The difference should be clear from the context of the equation. Sometimes the
substitution could be more abstract, again suppose f(x) = x2 so we have f ′(x) = 2x then

df

dx
(u) =

df

dx

∣∣∣∣
u

= 2u

Proposition 4.8.1. chain rule.

The Chain Rule states that if h = f ◦u is a composite function such that f is differentiable at u(x)
and u is differentiable at x then

d

dx
(f ◦ u) = (f ◦ u)′(x) = f ′(u(x))u′(x)

=
df

dx
(u(x))

du

dx

=
df

dx

∣∣∣∣
u

du

dx

=
df

du

du

dx
.

In words, the derivative of a composite function is the product of the derivative of the outside
function (f) evaluated at the inside function (u) with the derivative of the inside function.

Please don’t worry too much about all the notation, you are free to just use one that you like (provided it
is correct of course). Anyway, let’s look at an example or two before I give a proof.
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Example 4.8.2. Consider h(x) = (3x + 7)5 we can identify that this is a composite function with inside
function u(x) = 3x+ 7 and outside function f(x) = x5.

d

dx
(3x+ 7)5 =

df

dx

∣∣∣∣
3x+7

d

dx
(3x+ 7)

= 5x4

∣∣∣∣
3x+7

· 3

= 15(3x+ 7)4

I could also have written my work in the last example as follows,

d

dx
(3x+ 7)5 =

d

dx
(u5) = 5u4 du

dx
= 5(3x+ 7)4 · 3 = 15(3x+ 7)4.

Or you could even suppress the u notation all together and just write

d

dx
(3x+ 7)5 = 5(3x+ 7)4 d

dx
(3x+ 7) = 15(3x+ 7)4.

I just recommend writing at least one middle step, if you try to do it all at once in your head you are likely
to miss something generally speaking.

Example 4.8.3.

d

dx
(sin(x2)) =

d

dx
(sin(u))

= cos(u)
du

dx

= cos(x2)
d

dx
(x2)

= 2x cos(x2).

Example 4.8.4.

d

dx
(exp(3x2 + x)) =

d

dx
(exp(u))

= exp(u)
du

dx

= exp(3x2 + x)
d

dx
(3x2 + x)

= (6x+ 1) exp(3x2 + x).

Proof of the Chain Rule7: The proof I give here relies on approximating the function by its tangent line,

this is called the linearization of the function. Observe that u′(x) = limh→0(u(x+h)−u(x)
h ) and we can rewrite

the l.h.s. in terms of a matching limit u′(x) = limh→0(hu
′(x)
h ). Thus

lim
h→0

(
u′(x)h

h

)
= lim
h→0

(
u(x+ h)− u(x)

h

)
.

7a better proof is offered at the conclusion of this section
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This shows that if h→ 0 then u′(x)h ≈ u(x+ h)− u(x) which says that u(x+ h) ≈ u(x) + u′(x)h . We can
make the same argument to show that f(u+ δ) ≈ f(u) + f ′(u)δ for small δ ( the δ = u′(x)h which is small
in the argument below since u′(x) is finite and h→ 0 ). Consider then,

d

dx
(f ◦ u) = lim

h→0

(
(f ◦ u)(x+ h)− (f ◦ u)(x)

h

)
= lim
h→0

(
f(u(x+ h))− f(u(x))

h

)
= lim
h→0

(
f(u(x) + u′(x)h))− f(u(x))

h

)
= lim
h→0

(
f(u(x)) + u′(x)hf ′(u(x))− f(u(x))

h

)
= lim
h→0

(
u′(x)f ′(u(x))

)
= f ′(u(x))u′(x).

So the proof of the chain rule relies on approximating both the inside and outside function by their tangent
line. Let’s get back to the examples.

Example 4.8.5.
d

dx
(e
√
x) =

d

dx
(eu) = eu

du

dx
= e
√
x d

dx
(
√
x) = e

√
x 1

2
√
x

Example 4.8.6. Let a be a constant,

d

dx
(sin(ax)) =

d

dx
(sin(u)) = cos(u)

du

dx
= cos(ax)

d

dx
(ax) = a cos(ax).

Example 4.8.7. Let a be a constant,

d

dx
(eax) =

d

dx
(eu) = eu

du

dx
= eax

d

dx
(ax) = aeax

Example 4.8.8. Let a be a constant,

d

dx
(f(ax)) =

d

dx
(f(u)) = f ′(u)

du

dx
= f ′(ax)

d

dx
(ax) = af ′(ax).

I let the function f be arbitrary just to point out the past two examples can be generalized to any expression
of this type. We must have a function which is differentiable at ax in order for the calculation to hold true.

I will neglect the extra u notation past this point unless I think it is helpful,

Example 4.8.9. Let a, b, c be constants,

d

dx

( √
ax2 + bx+ c

)
=

1

2
√
ax2 + bx+ c

· d
dx

(ax2 + bx+ c)

=
2ax+ b

2
√
ax2 + bx+ c

.

I admit that all the examples up to this point have been fairly mild. The remainder of the section I give
examples which combine the chain rule with itself and the product or quotient rules.
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Example 4.8.10.

d

dx

( √
x2 +

√
x2 + 3

)
=

1

2
√
x2 +

√
x2 + 3

· d
dx

(
x2 +

√
x2 + 3

)
=

1

2
√
x2 +

√
x2 + 3

(
2x+

1

2
√
x2 + 3

d

dx
(x2 + 3)

)
=

1

2
√
x2 +

√
x2 + 3

(
2x+

x√
x2 + 3

)
.

Example 4.8.11. Let a, b, c be constants,

d

dx

(
cos(a sin(bx+ c))

)
= − sin(a sin(bx+ c)) · d

dx

(
a sin(bx+ c)

)
= − sin(a sin(bx+ c)) · a cos(bx+ c)

d

dx
(bx+ c)

= −ab sin(a sin(bx+ c)) cos(bx+ c).

We have to work outside in, one step at a time. Both of these examples followed the pattern (f ◦ g ◦h)(x) =
f(g(h(x))) which has the derivative (f ◦ g ◦h)′(x) = f ′(g(h(x)))g′(h(x))h′(x). Of course, in practice I do not
try to remember that formula, I just apply the chain rule repeatedly until the problem boils down to basic
derivatives.

Example 4.8.12.

d

dx
(x3e2x cos(x2)) =

d

dx
(x3)e2x cos(x2) + x3 d

dx
(e2x) cos(x2) + x3e2x d

dx
(cos(x2))

= 3x2e2x cos(x2) + x3e2x d(2x)

dx
cos(x2) + x3e2x(− sin(x2)

d(x2)

dx
)

= 3x2e2x cos(x2) + 2x3e2x cos(x2)− 2x4e2x sin(x2).

We can rearrange this expression using sin2(x2) = 1− cos2(x2)

d

dx
(x3e2x cos(x2)) = x2e2x

(
cos(x2)[3 + 2x+ 2x2]− 2x2

)
.

Example 4.8.13.

d

dx
(exx2)3 = 3(exx2)2 d

dx

(
exx2

)
= 3(exx2)2

(
d(ex)

dx
x2 + ex

d(x2)

dx

)
= 3(exx2)2

(
x2ex + 2xex

)
.

The better way to think about this one is that (exx2)3 = e3xx6 then the differentiation is prettier in my
opinion

d

dx
(e3xx6) =

d(e3x)

dx
x6 + e3x d(x6)

dx

= 3e3xx6 + 6x5e3x.
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Example 4.8.14.

d

dθ

(
sin(3θ)√
θ + 4

)
=

3 cos(3θ)
√
θ + 4− sin(3θ) 1

2
√
θ+4

(
√
θ + 4)2

=
3 cos(3θ)

√
θ + 4

√
θ + 4− sin(3θ)

√
θ+4

2
√
θ+4

(
√
θ + 4)3

=
6(θ + 4) cos(3θ)− sin(3θ)

2(θ + 4)
3
2

.

Example 4.8.15. Observe we can derive the power rule from the product rule.

d

dx
(xn) =

d

dx
(xx · · ·x) =

dx

dx
xn−1 + x

dx

dx
xn−2 + · · ·+ xn−1 dx

dx

= xn−1 + xn−1 + · · ·+ xn−1

= nxn−1.

Example 4.8.16.

d

dt

(
sin(
√

2t− 1)
)

= cos(
√

2t− 1)
d(
√

2t− 1)

dt

= cos(
√

2t− 1)
1

2
√

2t− 1

d(2t− 1)

dt

=
cos(
√

2t− 1)√
2t− 1

.

Example 4.8.17.

d

dt
(t2 cos(sin(t)) = 2t cos(sin(t)) + t2

(
− sin(sin(t))

d

dt
(sin(t))

)
= 2t cos(sin(t))− t2 sin(sin(t)) cos(t).

In most of the examples we have been able to reduce the answer into some expression involving no derivatives.
This is generally not the case. As the next couple of examples illustrate, we can have expressions that once
differentiated yield a new expressions which still contain derivatives.

Example 4.8.18. Suppose that c and f are functions of t then,

d

dt

(
cf
)

=
dc

dt
f + c

df

dt

Notice that if c is a constant then dc
dt = 0 so in that case we have that d

dt

(
cf
)

= cdfdt .

Example 4.8.19. Suppose that a particle travels on a circle of radius R centered at the origin. The particle
has coordinates (x, y) that satisfy the equation of a circle; x2 +y2 = R2. Moreover, both x and y are functions
of time t. What can we say about dx/dt and dy/dt ?

d

dt

(
x2 + y2

)
= 2x

dx

dt
+ 2y

dy

dt
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Notice since the radius R is constant it follows that R2 is also constant thus d
dt (R

2) = 0. Apparently the
derivatives dx/dt and dy/dt must satisfy

2x
dx

dt
+ 2y

dy

dt
= 0

Now this says that dx
dt = −y

x
dy
dt ( for points with x 6= 0 ). The position vector is ~r = (x, y) and velocity vector

is ~v = (dxdt ,
dy
dt ) . The dot-product is

~r · ~v = (x, y) · (dx
dt
,
dy

dt
) = x

dx

dt
+ y

dy

dt

We will learn that when ~r · ~v = 0 the vectors ~r and ~v are perpendicular. So the equation we found involving
dx/dt and dy/dt expresses that particles traveling in a circle have velocity vectors which are tangent to the
circle. (Tangents to a circle meet radial vectors at right angles)

4.9 Caratheodory’s Theorem and the chain rule

I have long been disatisfied with the earlier proof of the chain rule in this section from an analysis perspective.
This section was inspired in large part from Bartle and Sherbert’s third edition of Introduction to Real
Analysis. The central point is Caratheodory’s Theorem which gives us an exact method to implement the
linearization. Consider a function f defined near x = a, we can write for x 6= a

f(x)− f(a) =

[
f(x)− f(a)

x− a

]
(x− a).

If f is differentiable at a then as x→ a the difference quotient f(x)−f(a)
x−a tends to f ′(a) and we arrive at the

approximation f(x)− f(a) ≈ f ′(a)(x− a).

Theorem 4.9.1. Caratheodory’s Theorem.

Let f be a function whose domain includes the interval I and let a ∈ I. Then f is differentiable at
a iff there exists a function φ : I → R with the following two properties:

(1.) φ is continuous at a, (2.) f(x)− f(a) = φ(x)(x− a) for all x ∈ I

Proof:( ⇒) Suppose f is differentiable at a. Define φ(a) = f ′(a) and set φ(x) = f(x)−f(a)
x−a for x 6= a.

Differentiability of f at a yields:

lim
x→a

f(x)− f(a)

x− a
= f ′(a) ⇒ lim

x→a
φ(x) = φ(a).

thus (1.) is true. Finally, note if x = a then f(x)−f(a) = φ(x)(x−a) as 0 = 0. If x 6= a then φ(x) = f(x)−f(a)
x−a

multiplied by (x− a) gives f(x)− f(a) = φ(x)(x− a). Hence (2.) is true.

( ⇐) Conversely, suppose there exists φ : I → R with properties (1.) and (2.). Note (2.) implies

φ(x) = f(x)−f(a)
x−a for x 6= a hence limx→a

f(x)−f(a)
x−a = limx→a φ(x). However, φ is continuous at a thus

limx→a φ(x) = φ(a). We find f is differentiable at a and f ′(a) = φ(a). �
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Here’s how we use the theorem: If f is differentiable at a the there exists φ such that f(x) = f(a)+φ(x)(x−a)
and φ(a) = f ′(a). Caratheodory’s formula f(a) + φ(x)(x − a) is not a tangent line approximation because
φ(x) is not generally constant. Incidentally, this expression is a very elementary case of the formulas which
Morse Theory is built. Morse’s formulas are to the Taylor Series as Caratheodory’s formula is to the tangent
line approximation. Maybe later this semester you can understand this8.

Theorem 4.9.2. Chain Rule.

Suppose f, g are functions and I, J are intervals such that I ⊆ dom(f) and f(I) ⊆ J ⊆ dom(g). If
a ∈ I and f is differentiable at a and g is differentiable at f(a) then g ◦ f is differentiable at a and
(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof: apply Caratheodory’s Theorem twice. Since f is differentiable at a we know there exists φ such that
f(x) − f(a) = φ(x)(x − a) for all x ∈ I and φ(a) = f ′(a). Since g is differentiable at f(a) we know these
exists β such that g(y) − g(f(a)) = β(y)(y − f(a)) for all y ∈ J where β(f(a)) = g′(f(a)). Suppose x 6= a
and calculate:

(g(f(x))− g(f(a))

x− a
=
β(f(x))(f(x)− f(a))

x− a
=
β(f(x))φ(x)(x− a)

x− a
= β(f(x))φ(x).

By Caratheodory’s Theorem we know limx→a β(f(x)) = g′(f(a)) and limx→a φ(x) = f ′(a). Therefore,

lim
x→a

(g(f(x))− g(f(a))

x− a
= lim
x→a

β(f(x))φ(x) = lim
x→a

β(f(x)) · lim
x→a

φ(x) = g′(f(a))f ′(a). �

I’m curious what φ looks like for particular examples. Let’s try a simple case.

Example 4.9.3. Find φ of Caratheodory’s Theorem for f(x) = x2 relative to a = 1. Following the proof of
the theorem we note f ′(1) = 2 and define

φ(x) =

{
2 x = 1
x2−1
x−1 x 6= 1

⇒ φ(x) = x+ 1.

We find f(x) = 1 + (x+ 1)(x− 1). In contrast, the tangent line approximation is f(x) ≈ 1 + 2(x− 1).

Example 4.9.4. Find φ of Caratheodory’s Theorem for f(x) = ex relative to a = 0. Following the proof of
the theorem we note f ′(0) = 1 and define

φ(x) =

{
1 x = 0
ex−1
x x 6= 0

We find f(x) = 1 +
[
ex−1
x

]
x for x 6= 0. In contrast, the tangent line approximation is f(x) ≈ 1 + x.

Problems

Problem 4.9.1. hope to add problems in the future..

8or more likely in calculus II where you spend more time studying Taylor series, ask if you’d like to know more...
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4.10 higher derivatives

Higher derivatives are defined iteratively.

Definition 4.10.1. the n-th derivative of a function.

Suppose f : dom(f) ⊆ R → R and U ⊆ dom(f). We define f (0)(x) = f(x) and f (1)(x) = df
dx for all

such x ∈ dom(f) that f ′(x) ∈ R. Furthermore, for each n ∈ N we define f (n+1)(x) = d
dx [f (n)(x)]

for all such x ∈ dom(f) that f (n+1)(x) ∈ R. If f has continuous derivatives f ′, f ′′, . . . , f (k) on
U ⊆ dom(f) then f ∈ Ck(U). If we can take arbitrarily many derivatives of f and those derivatives
are continuous on U ⊆ dom(f) then we say f is smooth. The set of all smooth functions on U ⊆ R
is denoted C∞(U).

Many elementary functions are smooth over large subsets of R.

Example 4.10.2. Suppose f(x) = x5 + x4 + x3 + x2 + x+ 1

d

dx
[f(x)] = 5x4 + 4x3 + 3x2 + 2x+ 1

d

dx
[
d

dx
[f(x)]] =

d

dx
[5x4 + 4x3 + 3x2 + 2x+ 1] = 20x3 + 12x2 + 6x+ 2

d3

dx3
[f(x)] =

d

dx
[20x3 + 12x2 + 6x+ 2] = 60x2 + 24x+ 6

d4

dx4
[f(x)] =

d

dx
[60x2 + 24x+ 6] = 120x+ 24

d5

dx5
[f(x)] =

d

dx
[120x+ 24] = 120

Note that f (k)(x) = 0 for all k ≥ 6. It follows that f ∈ C∞(R).

Geometrically the second derivative of a function is connected to the curvature of the graph. The third, fourth
and higher derivatives also contain geometric information about a function. If we are given all derivatives of
a smooth function it is often possible to recreate the function everywhere with a formula built using those
derivatives. Using the last example, you might notice that

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 +

1

24
f (4)(0)x4 +

1

120
f (5)(0)x5.

Knowledge of the derivatives at zero gives global information about f in the equation above. This is an
interesting pattern which we will explore in more depth later.

Physically the higher derivatives are also of great importance. For mechanics only a few derivatives are
typically required.

Example 4.10.3. Suppose s : R→ R is the position of some particle as a function of time t. The velocity
at time t is defined to be (the dot-notation is still prevalent in modern classical mechanics courses, it dates
back to Newton whereas the d/dx notation is due to Leibniz)

v(t) =
ds

dt
= ṡ.
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The second derivative with respect to time is called the acceleration at time t and it is defined by

a(t) =
d2s

dt2
= s̈.

Notice we can equivalently state a(t) = dv
dt = v̇. If the particle has mass m then Newton’s Second Law states

that Fnet = ma where Fnet is the total force placed on the mass m. Beyond acceleration we have the jerk

which is the instantaneous rate of change of the acceleration j(t) = da
dt = d3s

dt3 . If you’ve ever rode a train
and transitioned from a straight track to a half-circle track then you’ve felt the jerk. The jerk will be big if
there is a discontinuity in the acceleration. We cannot complete these thoughts this semester. To correctly
discuss mechanics we need three dimensional mathematics. We need vectors9.

Example 4.10.4. How many times is f(x) = x
3
2 differentiable at zero10? Calculate,

f ′(x) =
3

2
x

1
2 , f ′′(x) =

3

4
x
−1
2

Notice that f ′′(0) = 3
4
√

0
/∈ R. The second derivative of f is not defined at zero. We say that f is differentiable

at zero, but f is not twice differentiable at zero. The source of this difficulty is that f ′ has a vertical tangent
at zero.

On the other hand it is not hard to see that f ∈ C∞(0,∞) since differentiating n-times we’ll find f (n)(x) =

kx
3
2−n for some constant k. The formula for f (n)(x) is clearly well-defined for x > 0.

Example 4.10.5. Another interesting function which fails to be smooth is f(x) = x|x|. The graph resembles
a cubic function but it is actually a pair of half-parabolas glued at the origin. For x > 0 we have f(x) = x2

and for x < 0 we have f(x) = −x2. It follows that

f ′(x) =

{
2x x ≥ 0

−2x x ≤ 0

9there is no reason you can’t learn vectors now. It is merely the custom of mathematics departments to make you
wait until calculus III to see the neat part. One could envision a calculus education which simultaneously implemented
the first third of calculus III throughout the earlier topics. True multivariate calculus really only begins when you
discuss multivariate functions in my mind. The calculus of space curves is just calculus I together with vectors.

10In such a case we ask only that the right limit of the difference quotient exists. We define that f ′(0) =

limh→0+
f(0+h)−f(0)

h
in the case 0 ∈ ∂(dom(f))
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In this case f ′(0) = 0 since limh→0−
f(0+h)−f(0)

h = limh→0+
f(0+h)−f(0)

h = 0. Consider the second derivative,

f ′′(x) =

{
2 x > 0

−2 x < 0
.

In this case f ′′(0) does not exist since limh→0−
f(0+h)−f(0)

h = −2 whereas limh→0+
f(0+h)−f(0)

h = 2. The
source of this difficulty is the kink in the graph of f ′ at zero.

If you want a function which is just k-times differentiable at zero you could use f(x) = xk|x|. Notice that
in all the examples I’ve given thus far if the function was differentiable on some interval then the derivative
function was also continuous. In other words, you might wonder if the distinction between differentiable and
continuously differentiable is a meaningful distinction. Since I’m posing this question by now you probably
know the answer is yes.

Example 4.10.6. I found this example in Hubbard’s advanced calculus text(see Ex. 1.9.4, pg. 123). It is a
source of endless odd examples, notation and bizarre quotes. Let f(x) = 0 and

f(x) =
x

2
+ x2 sin

1

x

for all x 6= 0. I can be shown that the derivative f ′(0) = 1/2 (hard to see from the green graph !). Moreover,
we can show that f ′(x) exists for all x 6= 0, we can calculate:

f ′(x) =
1

2
+ 2x sin

1

x
− cos

1

x

Notice that dom(f ′) = R. Note then that the tangent line at (0, 0) is y = x/2. You might be tempted to say
then that this function is increasing at a rate of 1/2 for x near zero. But this claim would be false since you
can see that f ′(x) oscillates wildly without end near zero.
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We have a tangent line at (0, 0) with positive slope for a function which is not increasing at (0, 0) (recall
that increasing is a concept we must define in a open interval to be careful). This function has infinitely
many critical points in a nbhd. of zero. You couldn’t even draw a sign-chart for the derivative if you wanted.
Continuity of the derivative helps eliminate pathological examples.

This sort of example is likely to occur to mathematicians but not so likely to occur to anyone else. Usually
if a function is differentiable at a point is also continuously differentiable. For functions of several variables
the story is much more involved 11

Problems

Problem 4.10.1. hope to add problems in the future..

11Continuity of the derivative function is later replaced with the requirement that the partial derivatives of a
multivariate function are continuously differentiable. It is a fortunate accident of one-dimensional mathematics that
the tangent line is well-defined in the case the derivative is not continuous (and yet exists). For functions of several
variables existence of partial derivatives need not indicate the existence of a tangent space. However, it is still true
that continuous differentiability signals that the tangent plane both exists and well-approximates the mapping near
the point of tangency. I discuss this in more depth in calculus III or advanced calculus.
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4.11 implicit differentiation and derivatives of inverse functions

Up to this point we have primarily dealt with expressions where it is convenient to just differentiate what
we are given directly. We just wrote down our f(x) and proceeded with the tools at our disposal, namely
linearity, the product, quotient and chain rules. For the most part this direct approach will work, but there
are problems which are best met with a slightly indirect approach. We typically call the thing we want to
find y then we’ll differentiate some equation which characterizes y and usually we get an equation which
implicitly yields dy

dx . This technique will reward us with the formulas for the derivatives of all sorts of inverse
functions. Before we get to the inverse functions let’s start with a few typical implicit derivatives.

Example 4.11.1. Observe that the equation x2 + y3 = ey implicitly defines y as a function of x (locally).
Let’s find dy

dx . Differentiate the given equation on both sides.

d

dx
(x2 + y3) =

d

dx
(ey)

now differentiate and use the chain rule where appropriate,

2x+ 3y2 dy

dx
= ey

dy

dx

Now solve for dy
dx ,

(ey − 3y2)
dy

dx
= 2x ⇒ dy

dx
=

2x

ey − 3y2

Notice that this equation is a little unusual in that the derivative involves both x and y.

Example 4.11.2. Observe that the equation xy+ sin(x) = exy implicitly defines y as a function of x. Let’s
find dy

dx .
d

dx

(
xy + sin(x)

)
=

d

dx
(exy)

=⇒ dx

dx
y + x

dy

dx
+ cos(x) = exy

d

dx
(xy)

=⇒ y + x
dy

dx
+ cos(x) = exy

(
y + x

dy

dx

)
Now solve for dy

dx ,

y + cos(x)− yexy = (xexy − x)
dy

dx
⇒ dy

dx
=
y + cos(x)− yexy

xexy − x
.

You might question why such differentiation is interesting. One good reason is that it is what we use to
solve related rates problems.

Example 4.11.3. Suppose that we know the radius of a spherical hot air balloon is expanding at a rate of
1 meter per minute due to an inflating fan. At what rate is the volume increasing if the radius R is at 10
meters ? To begin we need to recall that the volume V is related to the radius R by the equation V = 4π

3 R
3

for the sphere. Then,

dV

dt
=

d

dt

(
4π

3
R3

)
= 4πR2 dR

dt
= 4π(10m)2 m

min
≈ 1200

m3

min
.

We’ll do more of these in a later section.
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I hope you get the idea about these sort of problems. I’m going to shift back to the other type of problem
that implicit differentiation is great for. That is the problem of calculating the inverse function’s derivative.
We know the derivatives of ex, cos(x), sin(x), tan(x), sec(x). I will now systematically derive the derivatives
of ln(x), cos−1(x), sin−1(x), tan−1(x), sec−1(x) using essentially the same technique every time.

Example 4.11.4. Let y = ln(x) we wish to derive d
dx (ln(x)). To begin we take the exponential of both sides

of y = ln(x) to obtain

ey = eln(x) = x

Now differentiate with respect to x and solve for dy
dx ,

ey
dy

dx
= 1 =⇒ dy

dx
=

1

ey

Now remember that we found ey = x so we have shown that

d

dx

(
ln(x)

)
=

1

x
.

Example 4.11.5. Let y = cos−1(x) we wish to derive d
dx (cos−1(x)). To begin we take the cosine of both

sides of y = cos−1(x) to obtain

cos(y) = cos(cos−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

− sin(y)
dy

dx
= 1 ⇒ dy

dx
=
−1

sin(y)

Now sin2(y) + cos2(y) = 1 thus sin(y) =
√

1− cos2(y) but remember that we found cos(y) = x so sin(y) =√
1− x2 thus we find

d

dx

(
cos−1(x)

)
=

−1√
1− x2

.

Example 4.11.6. Let y = sin−1(x)) we wish to derive d
dx (sin−1(x)). To begin we take the sine of both sides

of y = sin−1(x) to obtain

sin(y) = sin(sin−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

cos(y)
dy

dx
= 1 ⇒ dy

dx
=

1

cos(y)

Now sin2(y) + cos2(y) = 1 thus cos(y) =
√

1− sin2(y) but remember that we found sin(y) = x so cos(y) =
√

1− x2 thus we find

d

dx

(
sin−1(x)

)
=

1√
1− x2

.
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Example 4.11.7. Let y = tan−1(x) we wish to derive d
dx (tan−1(x)). To begin we take the tangent of both

sides of y = tan−1(x) to obtain
tan(y) = tan(tan−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

sec2(y)
dy

dx
= 1 ⇒ dy

dx
=

1

sec2(y)

Now sin2(y) + cos2(y) = 1 thus if we divide this equation by cos2(y) we’ll obtain the less familiar identity
tan2(y) + 1 = sec2(y) . But we know that in this example tan(x) = y hence sec2(y) = 1 + x2. To conclude,

d

dx

(
tan−1(x)

)
=

1

1 + x2
.

Example 4.11.8. Let y = sec−1(x) we wish to derive d
dx (sec−1(x)). To begin we take the secant of both

sides of y = sec−1(x) to obtain
sec(y) = sec(sec−1(x)) = x

Now differentiate with respect to x and solve for dy
dx

sec(y) tan(y)
dy

dx
= 1 ⇒ dy

dx
=

1

sec(y) tan(y)

Now tan2(y) + 1 = sec2(y) tells us that tan(y) =
√

sec2(y)− 1. But we know that in this example sec(y) = x

hence tan(y) =
√
x2 − 1. Thus,

d

dx

(
sec−1(x)

)
=

1

x
√
x2 − 1

.

I hope you can see the pattern in the last five examples. To find the derivative of an inverse function we
simply need to know the derivative of the function plus a little algebra. The same technique would allow us
to derive the derivatives of cosh−1(x), sinh−1(x), tanh−1(x), csc−1(x), cot−1(x). I have not included those in
these notes because we have yet to calculate the derivatives of cosh(x), sinh(x), tanh(x), csc(x), cot(x). Rest
assured these functions can be dealt with by the same techniques we thus far exhibited in these notes. The
next examples follow the same general idea, but the pattern differs a bit.

Example 4.11.9. Suppose that y = ax we have yet to calculate the derivative of this for arbitrary a > 0
except the one case a = e. Turns out that this one case will dictate what the rest follow. Take the natural
log of both sides to obtain ln(y) = ln(ax) = x ln(a). Now differentiate, by Example 4.11.4,

d

dx

(
ln(y)

)
=

1

y

dy

dx
=

d

dx
(x ln(a)) = ln(a).

Now solve for dy
dx ,

dy

dx
= ln(a)y = ln(a)ax =⇒ d

dx
(ax) = ln(a)ax.

I should mention that I know another method to derive the boxed equation. In fact I prefer the following
method which is based on a useful purely algebraic trick: ax = exp(x ln(a)) so we can just calculate

d

dx
(ax) =

d

dx
(ex ln(a)) = ex ln(a) d(x ln(a))

dx
= ex ln(a) ln(a) = ln(a)ax.

but beware the sneaky step, how did I know to insert the exp ◦ ln ? I just did.
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Example 4.11.10. Suppose that y = xx. This is not a function we have encountered before. It is neither a
power nor an exponential function, it’s sort of both. I’ll admit the only place I’ve seen them is on calculus
tests. Anyway to begin we take the natural log of both sides; ln(y) = ln(xx) = x ln(x). Differentiate w.r.t x,

1

y

dy

dx
= ln(x) + x

1

x
=⇒ dy

dx
= y(ln(x) + 1)

Therefore we find,

d

dx
(xx) = (ln(x) + 1)xx.

If you have a problem with an unpleasant exponent it sometimes pays off take the logarithm. It may change
the problem to something you can deal with. The process of morphing an unsolvable problem to one which
is solvable through known methods is most of what we do in calculus. We learn a few basic tools then we
spend most of our time trying to twist other problems back to those simple cases. I have one more basic
derivative to address in this section.

Example 4.11.11. Let y = loga(x) we can exponentiate both sides w.r.t. base a which cancels the loga in
the sense aloga(x) = x,

ay = x =⇒ ln(a)ay
dy

dx
= 1 =⇒ dy

dx
=

1

ln(a)ay

But then since ay = x therefore we conclude,

d

dx

(
loga(x)

)
=

1

ln(a)x

Notice in the case a = e we have loge(x) = ln(x) and ln(e) = 1. Therefore, this result agrees with Example
4.11.4.

At this point I have derived almost every elementary function’s derivative. Those which I have not calculated
so far can certainly be calculated using nothing more than the strategies and methods advertised thus far.

Problems

Problem 4.11.1. hope to add problems in the future..
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.
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4.12 logarithmic differentiation

The idea of logarithmic differentiation is fairly simple. When confronted with a product of bunch of things
one can take the logarithm to convert it to a sum of things. Then you get to differentiate a sum rather than
a product. This is a labor saving device.

Example 4.12.1. Find the derivative of y = xex
2+9
√

3x+ 7 using logarithmic differentiation. Take the
natural log to begin,

ln(y) = ln(xex
2+9
√

3x+ 7) = ln(x) + ln(ex
2+9) + ln(

√
3x+ 7)

= ln(x) + x2 + 9 +
1

2
ln(3x+ 7).

We used the properties of the natural log to simplify as best we could before going on to the next step:
differentiate w.r.t.

1

y

dy

dx
=

1

x
+ 2x+

3

2(3x+ 7)

⇒ dy

dx
= xex

2+9
√

3x+ 7

(
1

x
+ 2x+

3

2(3x+ 7)

)
.

This is much easier than the 3-term product rule for this problem.

Example 4.12.2. Find dy
dx via logarithmic differentiation. Let.

y =

(
1

2− x

)
(x+ 32)

1
4 (x2 − 3)4

Take the natural log to begin,

ln(y) = ln(2− x)−1 + ln(x+ 32)
1
4 + ln(x2 − 3)4

= − ln(2− x) +
1

4
ln(x+ 32) + 4 ln(x2 − 3).

We used the properties of the natural log to simplify as best we could before going on to the next step:
differentiate w.r.t. x

1

y

dy

dx
=

1

2− x
+

1

4(x+ 32)
+

4(2x)

x2 − 3

⇒ dy

dx
=

(
1

2− x

)
(x+ 32)

1
4 (x2 − 3)4

(
1

2− x
+

1

4(x+ 32)
+

8x

x2 − 3

)
.

Again, this is much easier than the 3-term product rule for this problem

Example 4.12.3. Let a, b, c be constants. Differentiate y.

y =

(
1

x− a

)(
1

x− b

)2(
1

x− c

)3

Take the natural log to begin,

ln(y) = − ln(x− a)− 2 ln(x− b)− 3 ln(x− c)
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We used the properties of the natural log to simplify as best we could before going on to the next step:
differentiate w.r.t. x

1

y

dy

dx
=
−1

x− a
− 2

x− b
− 3

x− c

⇒ dy

dx
=

(
1

x− a

)(
1

x− b

)2(
1

x− c

)3( −1

x− a
− 2

x− b
− 3

x− c

)
.

Example 4.12.4. Differentiate y.

y = (x2 + 1)(x− 3)2(x3 + x)3(x− 1)4

Take the natural log to begin,

ln(y) = ln(x2 + 1) + 2 ln(x− 3) + 3 ln(x3 + x) + 4 ln(x− 1)

⇒ 1

y

dy

dx
=

2x

x2 + 1
+

2

x− 3
+

3(3x2 + 1)

x3 + x
+

4

x− 1

⇒ dy

dx
= y

(
2x

x2 + 1
+

2

x− 3
+

3(3x2 + 1)

x3 + x
+

4

x− 1

)
.

Example 4.12.5. Sometimes we might have a to start with, but the same algebraic wisdom applies, simplify

products to sums then differentiate. Find dy
dx for y = ln( sin(x)

√
x

x2+3x−2 ).

y = ln(
sin(x)

√
x

x2 + 3x− 2
)

= ln(sin(x)) +
1

2
ln(x)− ln(x2 + 3x− 2).

Now differentiate w.r.t. x and we’re done.

dy

dx
=

cos(x)

sin(x)
+

1

2x
− 2x+ 3

x2 + 3x− 2
.

Example 4.12.6. What about

y = ln((x+ 1)30 + 2)

We cannot simplify this one because we do not have a product inside the natural log. Just differentiate w.r.t
x

dy

dx
=

1

(x+ 1)30 + 2

d

dx

(
(x+ 1)30 + 2

)
=

30(x+ 1)29

(x+ 1)30 + 2
.

Knowing what you cannot do is sometimes the more important thing.

I wish there was some nice simple formula to break apart ln(A + B) but as far as I know ln(A + B) =
?, by this I simply mean that there is no simple formula to split it up. On the other hand we have used
ln(AB) = ln(A) + ln(B) together with ln(Ac) = c ln(A).
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4.12.1 proof of power rule

Finally we return to the power rule. As we mentioned from the start the power rule d
dx (xn) = nxn−1 holds

for all n ∈ R. Now we have the tools to prove it.

Proof: Let y = xn and take the natural log to obtain ln(y) = ln(xn) = n ln(x). Differentiate,

1

y

dy

dx
=
n

x
⇒ dy

dx
=
ny

x
=
nxn

x
= nxn−1.

This proof (in contrast to our earlier proof ) works in the case that n /∈ N. Somehow these curious little
logarithms have circumvented the whole binomial theorem. We conclude that for any n ∈ R

d

dx
(xn) = nxn−1.

Note, if n < 0 and n ∈ Z then f(x) = xn = 1
x−n is a function which has domain R− {0}. The proof offered

above fails for x < 0 since ln(x) is not real in such case. However, for cases of interest such as n = −2,−3, . . .
the argument can be modified. I leave this as an exercise for the reader. �

Another method to derive rules such as d
dx ( 1

xn ) = −n
xn+1 is apply the product rule n-times for the reciprocal

function for which we have already shown d
dx ( 1

x ) = −1
x2 .

Example 4.12.7.
d

dx
( 3
√
x ) =

d

dx
( x1/3 ) = (1/3)x−2/3 =

1

3x2/3
.

Example 4.12.8.
d

dy
(yπ+2) = (π + 2)yπ+1 ≈ 5.142y4.142

Problems

Problem 4.12.1. hope to add problems in the future..
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4.13 summary of basic derivatives

I collect all the basic derivatives for future reference.

Finally, let us conclude this chapter with a list of useful rules of differentiation. These in conjunction with
the basic derivatives we listed earlier in this section will allow us to differentiate almost anything you can
imagine. ( this is quite a contrast to integration as we shall shortly discover )
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Beyond these basic properties we have seen in this chapter that the technique of implicit differentiation helps
extend these simple rules to cover the inverse functions. It all goes back to the definition logically speaking,
but it is comforting to see that once we have established the derivatives of the basic functions and these
properties we have little need of applying the definition directly. I would argue this is part of what separates
modern (say the last 400 years) mathematics from ancient mathematics. We have no need to calculate limits
by some exhaustive numerical method. Instead, for a wealth of examples, we can find tangents through what
are essentially algebraic calculations. This is an amazing simplification. However, more recent times have
shown computers can model problems which defy algebraic description. A student of mathematics would be
wise to study computer aided solutions. Not so much for the purpose of gaining ease with homework, but
rather to gain skills which many employers seek and need12.

Problems

Problem 4.13.1. hope to add problems in the future..

12you can ask Dr. Wang about his numerical method course
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4.14 related rates

Given some algebraic relation that connects different dynamical quantities we can differentiate implicitly.
This relates the rates of change for the various quantities involved. Such problems are called ”related rates
problems”.

Example 4.14.1. Problem: Imagine a circular oil slick which continuous to grow as oil is added by the
EPA. If the EPA adds oil at a rate such that 3 square meters is added every second then how quickly is the
radius of the oil slick increasing when r = 10m?

Solution: since the oil slick is circular we know that the area of the slick (call it A) is related to the radius
of the slick (call it r) by A = πr2. In this context both A and r are functions of time so we may differentiate
implicitly to find

dA

dt
=

d

dt
(πr2) = 2πr

dr

dt

We were given that dA
dt = 3m2/2 thus,

dr

dt

∣∣∣∣
r=10m

=
1

2π(10m)
3
m2

s
=

3

20π

m

s
≈ 0.0159m/s.

Example 4.14.2. Problem: Suppose you add water to a rectangular bathtub at a rate of 5 cubic feet per
minute. If the dimensions of the tub are 5ft by 3ft then how quickly does the water rise?

Solution: We should define the variables; call the volume of water in the tub V and the area of the base A
and the height of water in the tub h. Since the tub is rectangular we have V = Ah where A = 15ft2. We
can relate the time-rate of change of V and h:

dV

dt
= A

dh

dt
⇒ dh

dt
=

1

A

dV

dt
.

We were given dV
dt = 5ft3/min thus

dh

dt
=

1

3

ft

min
.

Example 4.14.3. Problem: Suppose you add water to a triangular water trough built such that it has
equilateral triangular ends with side length 2ft and a length of 4ft. If the water is added at a rate of 5 cubic
feet per minute then how quickly does the water level rise if the water is at a height of 1ft from the base?
You may assume the trough is set-up on level ground such that the water level is parallel to the base of the
trough.

Solution: We should define the variables and draw a picture; call the volume of water in the trough V and
the height of water in the trough h. Since the trough is triangular we have a typical vertical cross section of
area A = 1

2BaseHeight = 1
2
h
2h. The volume V = Al where l = 4, thus V = h2. We can relate the time-rate

of change of V and h:
dV

dt
=

d

dt
(h2) = 2h

dh

dt
⇒ dh

dt
=

1

2h

dV

dt
.

We were given dV
dt = 5ft3/min thus

dh

dt
= 2.5

ft

min
.
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Example 4.14.4. Problem: If the sun travels across the sky over a period of 12 hrs and the distance to
the sun is known to be 93 million miles then how fast is the sun going? Suppose that the earth is fixed and
the sun is traveling in a circle at a constant rate. Also, for convenience you may neglect the size of the earth
relative to your observation.

Solution: The equation relating arclenth to angle θ subtended is s = Rθ. The sun goes from θ = 0 to θ = π
in the course of the given 12hr day. Since the rate at which the sun travels is constant the instantaneous
rate of change matches the average rate of change:

dθ

dt
=

∆θ

∆t
=

π

12hrs
.

Differentiating the arclength relation we find ds
dt = d

dt (Rθ) = R dθ
dt . We were given R = 93, 000, 000 miles

thus ds
dt = (93, 000, 000miles) π

12hrs ≈ 24, 300, 000mph.

We know that the perception of the sun travelling across the sky is actually due to the earth spinning.

The speed at which the earth rotates relative to its center is roughly v = 2π(4000miles
24hrs ≈ 1050mph (at the

equator). The circumference at the equator is about 25,000 miles. In contrast, the land at the North of South
poles rotates at a much slower tangential speed. For this reason the Earth is actually an oblate spheroid 13

because the equator is spun further away from the center due to the centripetal force. If you consider the last
example you can see why it was easy to give up on the idea of the earth being at the center and everything
else rotating around us. Stars further away than the sun would have to go even faster. You might wonder
how it can be determined the sun is 93 million miles away. The answer is trigonometry. I’ll leave it at that
for here.

Example 4.14.5. Problem: If a 10ft ladder slides down a wall without slipping such that the top of the
ladder slides down the wall at 3ft/s then how fast is the base of the ladder sliding away from the wall when
the ladder is 4ft from the wall ?

Solution: We label the distance from the ground to the top of the ladder to be y and the distance from the
base of the wall to the base of the ladder to be x. We are given that dy/dt = −3ft/s. On the other hand, by
the pythagorean theorem x2 + y2 = 100. Differentiating with respect to time we find

2x
dx

dt
+ 2y

dy

dt
= 0

Solve for dx/dt and note that if x = 4ft then y =
√

84 thus

dx

dt
= −y

x

dy

dt
= −
√

84

4
(−3

ft

s
) ≈ 6.9

ft

s
.

Notice that common sense also suggests that if dy/dt < 0 then dx/dt > 0.

Example 4.14.6. Problem: If a 10ft ladder slides down a parabolic wall (with equation y = 6 − x2)
without slipping such that the top of the ladder slides down the wall at 1ft/s (dy/dt) then how fast is the
base of the ladder sliding away from the wall when the ladder is at x = 2ft ?

13which is basically just a squished sphere
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Solution: the problem statement tells us y = 6− x2 thus dy
dt = −2xdxdt thus we may solve for dx/dt: (I omit

units, we agree to work in ft and s)

dx

dt
=
−1

2x

dy

dt
=
−1

4
(−1) = 0.25

Thus, bringing back the units,
dx

dt
= 0.25ft/s.

Remark 4.14.7.

Units are important however, writing explicit units is not always the best approach. A common
technique is to state from the outset which units you intend to use then you may add them back
at the end of the calculation. The answer should have units. To be honest, the last example is
not even well-posed if you are a stickler for units. I cannot write such an equation as y = 6 − x2

unless I assume that x and y are dimensionless. To be careful I’d need to write something like
y = 6ft− ( 1

ft )x
2 if both x, y are written in terms of ft. But, that equation is uglier than y = 6−x2

so we prefer to write less and just be careful to put given numerical data into our set of chosen units.
We chose [x] = [y] = ft and [t] = s in the last example (I use [f ] to denote the customary units of
f).

Example 4.14.8. Problem: Imagine two cars begin traveling from a point which we label as the origin.
If car A travels at 30mph along the direction θA = π/6 and if car B travels at 40mph along the direction
θB = 5π/4 then how quickly is the distance s between them increasing at time t? What is ds/dt at t = 1hr ?

Solution: we should imagine a triangle at time t. One vertex is at the origin and the other two are at cars
A and B respective. The angle at the origin is calculated to be β = θB − θA = 5π/4− π/6 = (30− 4)π/24 =
26π/24. Notice that as the cars travel along the straight lines the triangle gets bigger and the angles at A
and B are changing whereas the angle β is independent of time. We can write the law of cosines for the
angle β, note the opposite side is the distance between A and B which we labeled s:

s2 = s2
A + s2

B − 2sAsB cos(β).

Where sA, sB are the distances from the origin to cars A and B respective. Since the cars travel at constant
speed we can relate the distance to the time by the equations sA = 30t and sB = 40t. Thus,

s2 = 900t2 + 1600t2 − 2400t2 cos(β).

Differentiate with respect to time,

2s
ds

dt
= 1800t+ 3200t− 4800t cos(β).

Note s =
√

900t2 + 1600t2 − 2400t2 cos(β) hence

ds

dt
=

1

2
√

900t2 + 1600t2 − 2400t2 cos(26π/24)

[
1800t+ 3200t− 4800t cos(26π/24)

]
.

To calculate s′(1) we need only evaluate the expression above at t = 1; hence s′(1) = 69.41mph

Remark 4.14.9.

I will likely add pictures as I lecture on this material. You can also consult Stewart §3.8 or the
previous edition of my notes for additional examples.
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Problems

Problem 4.14.1. hope to add problems in the future..
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End of Chapter Problems

Problem 4.14.2. hope to add problems in the future..



4.14. RELATED RATES 165

.



166 CHAPTER 4. DIFFERENTIAL CALCULUS

.



Chapter 5

derivatives and linear approximations

Linearization of a function is the process of approximating a function by a line near some point. The tangent
line is the graph of the linearization. The differential is closely connected with the linearization. In short,
the difference between the concepts is as follows:

1. the linearization is an approximates the function near a given point.

2. the differential approximates the change in the function at a given point.

We examine how to apply linearizations to approximate nonlinear functions. We also consider how the
differential is useful in the analysis of error propagation. Finally, we use derivatives in the formulation of
Newton’s method. This iterative method allows us to use the power of calculus to find approximate solutions
to algebraic or even transcendental equations.

5.1 linearizations

We have already found the linearization of a function a number of times. The idea is to replace the function
by its tangent line at some point. This usually1 provides a good approximation if we are near to the point.
The linearization of a function f at a point a ∈ dom(f) is denoted by Laf or simply Lf in this course,

Laf (x) ≡ f(a) + f ′(a)(x− a)

The graph of Laf is the tangent line to y = f(x) at (a, f(a)).

Example 5.1.1. Suppose the singularity has occurred and the robot holocaust has cast doubt on the service
of all machines. You need to calculate a squareroot but you can’t trust your calculator. What to do? Let
f(x) =

√
x and use the linearization. Take the number you wish to find the root for and pick the closest easy

root you can find center the linearization. Then the linearization of the number will give a close estimate of
the root you wish to find. For example,

√
4.01. Notice, 4.01 = 4 + 0.01 and we know

√
4 = 2 thus we use

a = 4 as the center of the approximation. Calculate that f ′(x) = 1
2
√
x

hence,

f(x) ≈ L4
f (x) = f(4) + f ′(4)(x− 4) = 2 +

1

4
(x− 4).

1we discuss limitations of the tangent line approximation at the conclusion of this section
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Therefore,
√

4.01 ≈ 2 +
4.01− 4

4
= 2 + 0.0025 = 2.0025.

Since Wolfram-alpha is still free and fairly benevolent I believe that in truth

√
4.01 = 2.00249843945007857276972121483226054214864513129159...

As you can easily see we did very well considering the crudeness of our method (in fact the error is only
about 0.0001%). Is a line a parabola? Certainly not. But that is the heart of what I just did. I said you
can replace a curve with a line locally and get good approximations. But, what is ”local” how far does this
linearization give ”good” results? Just for perspective I list a few less accurate results from this linearization:

√
9 ≈ 2 +

1

4
(9− 4) = 3.25 (8.33% error)

√
16 ≈ 2 +

1

4
(16− 4) = 5 (25% error)

√
25 ≈ 2 +

1

4
(25− 4) = 7.25 (45% error)

Here’s a picture of what just happened.

Many authors would replace x with 4+h and use g(h) =
√

4 + h in which case the center of the approximation
is naturally taken to be zero thus

√
4 + h ≈ 2+ h

4 . It’s just a matter of notation. In the same sense your text
has more to say about the ”differential”, however if you examine the mathematics closely you’ll learn that
the differential and the linearization are being used to accomplish the same goal. I will discuss both just to
be safe. In a nutshell, the differential approximates the change in the function near some base point whereas
the linearization approximates the function itself near the base point. By ”base point” I simply mean the
point at which the approximation is based. In the last example we had base point a = 4.

Problems

Problem 5.1.1. hope to add problems in the future..
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5.2 differentials and error

The change in the function between a and a + h is denoted ∆f = f(a + h) − f(a) and if y = f(x) then
we may likewise state ∆y = f(a + h) − f(a). Likewise, the change in x with respect to these two points
is ∆x = a + h − a = h. The linearization based at a for f is given by Laf (x) = f(a) + f ′(a)(x − a). If we
substitute x = a + h into the formula for the linearization we find Laf (a + h) = f(a) + f ′(a)h which gives
that Laf (a+ h)− f(a) = f ′(a)h. If h ≈ 0 then we expect Laf (a+ h) ≈ f(a+ h) thus it follows that

∆f ≈ f ′(a)h.

The notation is deceptively simple here: ∆f = ∆y, f ′(a) = df
dx (a) and h = ∆x. This gives:

∆y ≈ df

dx
(a)∆x.

Definition 5.2.1.

Suppose f : U ⊆ R→ R then if f has a derivative at a then it also has a differential dfa : R→ R
at a which is a function defined by dfa(h) = hf ′(a).

Notice that the derivative at a point (f ′(a)) is a number whereas the differential at a point (dfa) is a linear
function. The linearization (Laf ) of the function at (a, f(a)) is actually an affine function which just means
it has a graph which is a line with a possibly nonzero y-intercept.

Example 5.2.2. Estimate the uncertainty in the volume of a cubical box if you measure the length of the
side to be 20in± 0.2in. Let x denote the length of the side and V the volume of the box then

V = x3

Thus dV
dx = 3x2. We find,

∆V ≈ dV

dx
(a)∆x.

We are given a = 20in and ∆x = 0.2in thus,

∆V ≈ 3(20)2(0.2)in3 = 240in3.

Thus the uncertainty in the volume of the cubical box is approximately ±240in3

Example 5.2.3. Suppose that we have 5 resistors all given to have a resistance of R = 10Ω. Furthermore,
we know that the given resistance values are known to within 5% by the resistors color coding. If the resistors
are arranged so that 2 of the resistors are in series and the other 3 are in parallel with the series combination
then what is the error in the equivalent resistance Req? In second semester physics you can learn to calculate
that

Req =

[
1

R
+

1

R
+

1

R
+

1

R+R

]−1

=

[
7

2R

]−1

=
2R

7
.

We calculate ∆Req = 2
7∆R = 0.286∆R. Since 5% of 10Ω is 0.5Ω we are given that ∆R = 0.5Ω thus

∆Req = (0.286)(0.5)Ω = 0.143Ω. Notice that R = 10Ω gives Req = 2.86Ω so we have Req = 2.86± 0.143Ω.
The uncertainty in the value of the equivalent resistance is [0.143/2.86][100%] = 5%.
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It should be mentioned that the total and correct analysis of error propagation is more involved that this
section indicates. If you want to see more you might look at Data Reduction and Error Analysis for the
Physical Sciences by Bevington and Robinson.

Remark 5.2.4.

It is also true that dfa = df
dx (a)dxa, but beware this equation is not just multiplication and division of

tiny variables. Let g(x) = x for all x ∈ R. Note that g′(x) = 1 and it follows that dga(x) = 1 ·x = x
for all x ∈ R. Therefore, dg = g. If we denote g = x so that dx = x in this notation. Note then we
can write the differential in terms of the derivative function:

df(a)(h) = dfa(h) = f ′(a)h = f ′(a)dxa(h) for all h ∈ R

Hence df(a) = f ′(a)dxa for all a ∈ R hence df = f ′dx or we could denote this by the deceptively
simple formula df = df

dxdx.
Most elementary calculus texts give you the idea that f ′(a) is primary and dfa is just some application
tacked on at the end, however it turns out that in the big scheme of things dfa is the primary
object and it has a definition which generalizes even to infinite dimensional calculus. In general the
differential is a linear operator and the derivative is the matrix of that operator. See my advanced
calculus notes or Edward’s excellent text for a deeper perspective on the concept of a differential.

Problems

Problem 5.2.1. hope to add problems in the future..
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5.3 Newton’s method

In this section we use linearizations to find roots of equations. The idea is actually very simple: we wish to
solve f(x) = 0 for a given differentiable function f

1. guess a solution xo and calculate f(xo) and if it is close enough to zero then stop.

2. construct Lo(x) = f(xo)+f ′(xo)(x−xo) and solve Lo(x1) = 0 to find solution x1 = xo−f(xo)/f
′(xo).

3. calculate f(x1) and if it is close enough to zero then stop.

4. construct L1(x) = f(x1)+f ′(x1)(x−x1) and solve L1(x2) = 0 to find solution x2 = x1−f(x1)/f ′(x1).

5. calculate f(x2) and if it is close enough to zero then stop.

6. construct L2(x) = f(x2)+f ′(x2)(x−x2) and solve L1(x3) = 0 to find solution x3 = x2−f(x2)/f ′(x2).

7. calculate f(x3) and so forth and so on until you get close enough to consider it a solution for the
purposes of your application.

To summarize: we wish to solve f(x) = 0 then we guess xo to begin then calculate iteratively by the rule

xn+1 = xn − f(xn)/f ′(xn)

until |f(xn)| < ε where ε is an upper bound on the error you allow for the approximate solution.

Example 5.3.1. Let’s see how to solve the equation e−x
2

= x to within ±0.01. First construct f(x) =

e−x
2 − x and note that the problem becomes solving f(x) = 0. Calculate f ′(x) = −2xe−x

2 − 1. To begin we
guess xo = −0.2. Note f(−0.2) u 1.16. Calculate x1 = xo − f(xo)/f

′(xo) = 1.69. I have pictured the initial
guess xo as well as the first iterate x1 with green diamonds on the x− axis:

You can see that x1 is the x-intercept of the tangent line from xo. Next, we can calculate x2 = x1 −
f(x1)/f ′(x1) = 0.324.



172 CHAPTER 5. DERIVATIVES AND LINEAR APPROXIMATIONS

You can see that x2 is the x-intercept of the tangent line from x1. Next, we can calculate x3 = x2 −
f(x2)/f ′(x2) = 0.686.

You can see that x3 is the x-intercept of the tangent line from x2. Next, we can calculate x4 = x3 −
f(x3)/f ′(x3) = 0.653.
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At this point the tangent line so closely follows the function it is difficult to see where the tangent line based
at (x3, f(x3)) crosses the x-axis. We calculate

f(0.653) = e−0.6532

− 0.653 = −0.00015.

Therefore, to a good approximation, the solution of e−x
2

= x is x = 0.653.

I included the pictures in the preceding example to emphasize the idea of the method. In practice the graphs
are not necessary for the calculation. However, looking at a graph is a good method to select the initial
guess of xo.

Example 5.3.2. Calculate 3
√

20. Use your imagination, if x = 3
√

20 then x3 = 20. We need to solve the
equation x3 − 20 = 0 in other words, find the zero of f(x) = x3 − 20. We’ll use Newton’s method with an
initial guess of xo = 2.5 since we know that our answer must be somewhere between 2 and 3 since 23 = 8
and 33 = 27. Note f ′(x) = 3x2.

x1 = xo − f(xo)/f
′(xo) = 2.5 + 4.375/18.75 = 2.733

x2 = x1 − f(x1)/f ′(x1) = 2.733− 0.4136/22.41 = 2.715

x3 = x2 − f(x2)/f ′(x2) = 2.715− 0.013/22.11 = 2.714

We calculate that 2.7143 = 19.991 thus 3
√

20 ≈ 2.714.

What if you wanted to calculate log3(7) via Newton’s method? I leave this as an exercise for the reader.
The ideas presented in this section are used by calculators with great success. There are examples for which
Newton’s method fails to find a root, but it’s not hard to modify the naive algorithm in this section to capture
most roots. We’ve seen in our examples that even in less than 10 iterations the method zoomed in on the
root. How quickly the method converges to the answer is important for applications because it determines
the number of computer operations we will have to perform to execute the method. There are a number of
useful estimates on the error of a particular iterate however they are beyond the scope of this course. You
might read pages 160-165 of Edwards Advanced Calculus if you’re interested in the pure mathematics of the
topic. The goal of Edwards section is to prove the following theorem:
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Proposition 5.3.3. inverse function theorem for one-variable function.

Let f be a continuously differentiable functions on a nbhd of a then if f ′(a) 6= 0 there exists a δ > 0
such that f is invertible when restricted to (a − δ, a + δ). In other words, if f ′(a) 6= 0 and f ′(x)
exists for x near a then f is locally invertible near a.

Proof Sketch: since f ′(a) 6= 0 and f ′ is continuous it follows f ′(x) 6= 0 on some nbhd. of a. Thus f ′(x) is
either positive or negative on this nbhd and thus f is strictly monotonic and may therefore by inverted. �

The proof in Edwards is fascinating and constructive. He shows how to find a sequence of functions which
converges to the inverse function. This means he shows how to construct an inverse function even in cases
where you cannot implement the precalculus algorithm to find the inverse 2. Incidentally, I don’t mean to
indicate that this idea is unique to Edward’s text. These ideas are older and can be found in dozens, if not
hundreds, of modern texts on numerical methods.

Problems

Problem 5.3.1. hope to add problems in the future..

2 you remember, y = f(x), solve for x then say x = f−1(y). Don’t switch x and y, it’s better to use different
letters for the domain and range of the function since they may well have different physical interpretations and/or
be different sets. We can think of functions of y or functions of x. We are not slaves to notation!
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.

End of Chapter Problems

Problem 5.3.2. hope to add problems in the future..
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Chapter 6

geometry and differential calculus

In this modern age it is tempting to neglect a careful study of graphing since we have so much technological
assistance. However, by doing such we would rob ourselves of basic geometric intuition. In my view there
is no substitute for seeing the nuts and bolts of calculus and their application to graphing. Moreover, the
application of this analysis to word problems answers many nontrivial questions. Given a mathematical
model we might wish to know which values of the variable make it the fastest, tallest, shortest, coolest,
cheapest, etc... these sort of questions are easily answered by the analysis in this chapter.

In Chapter 4 we learned how to differentiate. In Chapter 5 we learned that the basic interpretation of the
derivative at a point is as a linear approximation. In this chapter we learn what a derivative as a function
means. We also analyze the geometric significance of higher derivatives. To complete the story of graphing
we analyze limits at ±∞. We also apply such limits to analyze the asymptotic behavior of a function thus
generalizing the idea of a horizontal asymptote. The asymptotic behavior of a model is sometimes the
most interesting case. l’Hopital’s rule is introduced and justified. Finally, breaking from some calculus-
orthodoxy I discuss Taylor’s Theorem1 with Lagrange’s form of the remainder. It is my opinion that the
power of the theorem warrants some discussion at this time. Taylor’s theorem elucidates and expands the
second derivative test. Moreover, the idea of polynomial approximation is a very important idea to many
applications. I show how polynomial approximations play a special role in physics.

6.1 graphing with derivatives

We would like to develop a strategy to locate where a given function takes its largest positive or negative
values. In an application this tells us the boundaries of what is possible for a given model. For example, the
motion of a spring oscillates between two positions. In other words, we can bound the motion between those
two positions. In contrast, we might study a bridge over which a wind blows with a certain frequency. If the
frequency of the wind matches the resonant frequency of the structure then the oscillation or waving motion
of the bridge could build without bound. In that case a good mathematical model2 of the bridge would
reveal motion which is unbounded. The idea of bounded motion is closely connected with the following:

1note we do not discuss series at this juncture, the totality of that topic waits until calculus II, I simply include
some discussion here in the interest of deeper geometric insight. As a side consequence I also hope this inclusion
strengthens the student for calculus II’s travails

2a good mathematical model is the sort which anticipates these sort of problems before they occur
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Definition 6.1.1. absolute extrema.

1. We say a function f has an absolute maximum at c if f(c) ≥ f(x) for all x ∈ dom(f). The
absolute maximum is f(c) in this case.

2. We say a function f has an absolute minimum at d if f(d) ≤ f(x) for all x ∈ dom(f). The
absolute minimum is f(d) in this case.

3. If there exist absolute maximum and minimum values then we call them the global extrema
of f .

One subtle point is that motion could be bounded and yet no global extrema are realized. Think about it.
What shape of graph would be bounded and yet have no global max. or min. ? A less subtle comment is
that if a function has a VA then it is not bounded above and below and it also does not possess global a
maximum and minimum (it might have just a global max. or just a min.). It can happen that function has
a global minimum but not global maximum. For example the function below has f(0) = −2 and that is the
global minimum for f(x) = |x| − 2.

Suppose we are given a model plus some additional condition so that we know the model must have variables
whose values are near some given data point. In a case such as that it is interesting to know what the largest
positive or negative values the function takes near the given data point. Mathematically this is encapsulated
by the idea of a local extreme value:

Definition 6.1.2. local extrema.

1. A function f has a local maximum at c if there exists a connected set J with c ∈ J and
J ⊆ dom(f) such that f(c) ≥ f(x) for all x ∈ J . The local maximum is f(c) in this case.

2. A function f has a local minimum at c if there exists a connected set J with c ∈ J and
J ⊆ dom(f) such that f(c) ≤ f(x) for all x ∈ J . The local minimum is f(c) in this case.

3. If f(c) is either a local maximum or a local minimum then we say f(c) is a local extrema
at c.

In the graph below the are local minima at x = −5, 5, 10, 16 and the local maxima are at 1, 8, 14, 19. The
global maximum is 15 it is reached at x = 14. The global minimum is 5 and it is reached at x = −5 and
x = 10.
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The example above is just intended to illustrate the definitions. Usually we are not given a picture of the
graph. More often we are given the formula for the function then we endeavor to discover the graph through
a careful, calculus-assisted analysis.

The following theorem is at the heart of most everything that follows in this chapter.

Proposition 6.1.3. Extreme value theorem.

Suppose that f is a function which is continuous on [a, b] then f attains its absolute maximum f(c)
on [a, b] and its absolute minimum f(d) on [a, b] for some c, d ∈ [a, b].

It’s easy to see why the requirement of continuity is essential. If the function had a vertical asymptote on
[a, b] then the function gets arbitrarily large or negative so there is no biggest or most negative value the
function takes on the closed interval. Of course, if we had a vertical asymptote then the function is not
continuous at the asymptote. The proof of this theorem is technical and beyond the scope of this course.
See Apostol pages 150-151 for a nice proof.

Notice the extreme value theorem does not really tell us how to find extrema. It merely states they exist
somewhere if the given function is continuous. Naturally we would like a way to locate such points. Given
our earlier work with tangent lines it would seem intuitively natural to suppose those extrema should be
found at points where there is either a horizontal tangent or a jump or kink in the graph. Those graphical
features will either make the derivative at the point to be zero or undefined. We wish to prove this intuition
valid. Begin by defining the points of interest:

Definition 6.1.4. critical numbers.

We say c ∈ R is a critical number of a function f if either f ′(c) = 0 or f ′(c) does not exist. If
c ∈ dom(f) is a critical number then (c, f(c)) is a critical point of f .

Notice that a critical number need not be in the domain of a given function. For example, f(x) = 1/x has
f ′(x) = −1/x2 and thus c = 0 is a critical numbers as f ′(0) does not exist in R. Clearly 0 /∈ dom(f) either.
It is usually the case that a vertical asymptote of the function will likewise be a vertical asymptote of the
derivative function.

Proposition 6.1.5. Fermat’s theorem.

If f has a local extreme value of f(c) and f ′(c) exists then f ′(c) = 0.
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Proof: suppose f(c) is a local maximum. Then there exists δ1 > 0 such that f(c + h) ≤ f(c) for all

h ∈ Bδ1(0). Furthermore, since f ′(c) ∈ R we have limh→0
f(c+h)−f(c)

h = f ′(c) ∈ R. If h > 0 and h ∈ Bδ1(0)
then f(c+ h)− f(c) ≤ 0 hence,

f(c+ h)− f(c)

h
≤ 0

Using the squeeze theorem we find f ′(c) = limh→0+
f(c+h)−f(c)

h ≤ limh→0(0) = 0. Likewise, if h < 0 and
h ∈ Bδ1(0) then f(c+ h)− f(c) ≤ 0 hence,

f(c+ h)− f(c)

h
≥ 0

Using the squeeze theorem we find f ′(c) = limh→0−
f(c+h)−f(c)

h ≥ limh→0(0) = 0. Consequently, f ′(c) ≤ 0
and f ′(c) ≥ 0 therefore f ′(c) = 0. The proof in the case that f(c) is a local minimum is similar. �

Remember, if f ′(c) does not exist then c is a critical point by definition. Therefore, if f(c) is a local extrema
then c must be a critical point for one of two general reasons:

1. f ′(c) exists so Fermat’s theorem proves f ′(c) = 0 so c is a critical point.

2. f ′(c) does not exist so by definition c is a critical point.

Sometimes Fermat’s Theorem is simply stated as ”local extrema happen at critical points”.

The converse of this Theorem is not true. We can have a critical number c such that f(c) is not a local
maximum or minimum. For example, f(x) = x3 has critical number c = 0 yet f(0) = 0 which is neither a
local max. nor min. value of f(x) = x3. It turns out that (0, 0) is actually an inflection point as we’ll discuss
soon. Another example of a critical point which yields something funny is a constant function; if g(x) = k
then g′(x) = 0 for each and every x ∈ dom(g). Technically, y = k is both the minimum and maximum value
of g. Constant functions are a sort of exceptional case in this game we are playing.

Proposition 6.1.6. Rolle’s theorem.

Suppose that f is a function such that

1. f is continuous on [a, b],

2. f is differentiable on (a, b),

3. f(a) = f(b).

Then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof: If f(x) = k for all x ∈ [a, b] then every point is a critical point and the theorem is trivially satisfied.
Suppose f is not constant, apply the Extreme Value Theorem to show there exists c, d ∈ [a, b] such that
f(c) ≥ f(x) for all x ∈ [a, b] and f(d) ≤ f(x) for all x ∈ [a, b]. Since f(xo) 6= f(a) for at least one xo ∈ (a, b)
it follows that f(xo) > f(a) or f(xo) < f(a). If xo ∈ (a, b) and f(xo) > f(a) then f(a) is not the absolute
maximum therefore we deduce c ∈ (a, b) is the absolute maximum. Likewise, if xo ∈ (a, b) and f(xo) < f(a)
then f(a) is not the absolute minimum therefore we deduce d ∈ (a, b) is the absolute maximum. In all cases
there is an absolute extremum in the open set (a, b) hence there exists a critical point in the interior of the
set. Moreover, since f is differentiable on (a, b) it follows that either f ′(c) = 0 or f ′(d) = 0 and Rolle’s
theorem follows. �
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Let’s think about this theorem as it applies to the physics of projectile motion. If the height of a cat is y(t)
and it represents a cat thrown up into the air for 3 seconds meaning y(0) = y(3) = 0. Then v = dy/dt must
be zero at some point during the flight of the cat. What goes up must come down, and before it comes down
it has to stop going up.

Proposition 6.1.7. Mean Value Theorem (MVT).

Suppose that f is a function such that

1. f is continuous on [a, b],

2. f is differentiable on (a, b),

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a . That is, there exists c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

Proof:(essentially borrowed from Stewart pg. 216-217, this proof is common to a host of calculus texts).
The equation of the secant line to y = f(x) on the interval [a, b] is y = s(x) where s(x) is defined via the
standard formula for a line going from (a, f(a) to (b, f(b))

s(x) = f(a) +
f(b)− f(a)

b− a
(x− a).

The Mean Value Theorem proposes that there is some point on the interval [a, b] such that the slope of the
tangent line is equal to the slope of the secant line y = s(x). Consider a new function defined to be the
difference of the secant line and the given function, call it h:

h(x) = f(x)− s(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

Observe that h(a) = h(b) = 0 and h is clearly continuous on [a, b] because f is continuous and besides that
the function is constructed from a sum of a polynomial with f . Additionally, it is clear that h is differentiable
on (a, b) since polynomials are differentiable everywhere and f was assumed to be differentiable on (a, b).
Thus Rolle’s Theorem applies to h so there exists a c ∈ (a, b) such that h′(c) = 0 which yields

h′(c) = f ′(c)− f(b)− f(a)

b− a
= 0 =⇒ f ′(c) =

f(b)− f(a)

b− a
. �

Physical Significance of the Mean Value Theorem: The term ”mean” could be changed to ”average”. Apply
the MVT to the case that the independent variable is time t and the dependent variable is position y and
we get the simple observation that the average velocity over some time interval is equal to the instantaneous
velocity at some time during that interval of time. For example, if you go 60 miles in one hour then your
average velocity is clearly 60mph. The MVT tells us that some time during that hour your instantaneous
velocity was also 60mph.

Proposition 6.1.8. sign of the derivative function f ′ indicates strict increase or decrease of f .

Suppose that f is a function and J is a connected subset of dom(f)

1. if f ′(x) > 0 for all x ∈ J then f is strictly increasing on J

2. if f ′(x) < 0 for all x ∈ J then f is strictly decreasing on J .
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Proof: suppose f ′(x) > 0 for all x ∈ J . Let [a, b] ⊆ J and note f is continuous on [a, b] since it is given
to be differentiable on a superset of [a, b]. The MVT applied to f with respect to [a, b] implies there exists
c ∈ [a, b] such that

f(b)− f(a)

b− a
= f ′(c).

Notice that f(b)− f(a) = (b−a)f ′(c) but b−a > 0 and f ′(c) > 0 hence f(b)− f(a) > 0. Therefore, for each
pair a, b ∈ J with a < b we find f(a) < f(b) which means f is strictly increasing on J . Likewise, if f ′(c) < 0
then almost the same argument applies to show a < b implies f(a) > f(b). �

Theorem 6.1.9. derivative zero implies constant function.

If f ′(x) = 0 for each x ∈ (a, b) then f is a constant function on (a, b).

Proof: apply the Mean Value Theorem. We know we can because the derivative exists at each point on the
interval and this implies the function is continuous on the open interval, so it is continuous on any closed
subinterval of (a,b). Let us denote this closed subinterval by J = [ao, bo] ⊂ (a, b). We have to apply the
Mean Value Theorem to J = [ao, bo] because we do not know for certain that the function is continuous on
the endpoints. We find,

0 =
f(bo)− f(ao)

bo − ao
=⇒ f(bo) = f(ao)

But this is for an arbitrary closed subinterval hence the function is constant on (a,b). �

Caution: we cannot say the function is constant beyond the interval (a, b). It could do many different
things beyond the interval in consideration. Piecewise continuous functions are such examples, they can be
constant on the pieces yet at the points of discontinuity the function can jump from one constant to another.

Theorem 6.1.10. if derivatives of two functions agree then the functions have same shaped graph.

If f ′(x) = g′(x) for each x ∈ (a, b) then f(x) = g(x) + c for some constant c ∈ R.

Proof: Apply Proposition 6.1.9 to h(x) = f(x)− g(x). Notice h′(x) = f ′(x)− g′(x) = 0 hence h(x) = c and
thus c = f(x)− g(x). The proposition follows. �

Notice that the assumption is that they are equal on an open interval. If we had that the derivatives of
two functions were equal over some set which consisted of disconnected pieces then we could apply Theorem
6.1.10 to each piece separately then we would need to check that those constants from different components
matched up. (for example if df

dx = dg
dx on (0, 1) ∪ (2, 3) then we could have that f(x) = g(x) + 1 on (0,1)

whereas f(x) = g(x) + 2 on (2, 3)).

Physical Significance: If we have equal velocities over some time interval then the displacement between our
positions at any time will be constant.

Proposition 6.1.11. sign-charts for derivatives reveal increase and decrease of function.

If f has finitely many critical numbers and f then the intervals of increase and decrease for f can be
determined through the use of a sign-chart for f ′(x). In particular, one draws a number line with
all critical points then labels either (+) or (−) on each subinterval based on a test point for f ′(x)
in the subinterval. The function is either increasing or decreasing on each subinterval bounded by
the critical points.
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Proof: since there are finitely many critical points we may partition the real line into a finite number of
disjoint open intervals which are joined at critical numbers. Then we apply Proposition 6.1.8 to each open
interval to determine strict increase or decrease. The sign-chart is simply a number line indicating this
analysis in a nice organized fashion. See the next subsection for examples. �

The sign-chart also applies to the case of countably many critical points which are separated by finite open
intervals. For example f(x) = cos(πx) has f ′(x) = −π sin(πx) and we have infinitely many critical numbers
of the form c = n for n ∈ Z. The concept of the sign-chart does just fine for an example like f(x) = cos(πx).
However, the sign-chart is not helpful for functions which have dense accumulations of critical points in some
nbhd. (see Example 4.10.6 for this bad behavior).

6.1.1 first derivative test

The following theorem naturally follows from the sign-test theorem.

Theorem 6.1.12. sign-charts for derivatives reveal increase and decrease of function.

Suppose f is continuous on an open interval containing a critical number c then

1. if f ′(x) changes signs from positive to negative at c then f(c) is a local maximum.

2. if f ′(x) changes signs from negative to positive at c then f(c) is a local minimum.

3. if f ′(x) does not change signs at c then f(c) is not a local extrema.

In each of the examples that follow in this section we aim to use calculus to analyze the graph
of the function. In particular, we are interesting in locating any local extrema and the intervals
of increase and decrease for the given functions.

Example 6.1.13. Let f(x) = 1
3x

3 + 1
2x

2 − 6x. Find all critical numbers and classify the critical points as
local maximums, minimums or neither. Observe,

f ′(x) = x2 + x− 6 = (x− 2)(x+ 3).

We have two critical numbers, c = 2 and c = −3. Therefore, we set-up the sign-chart as follows:

Then we test a point somewhere in the interior of each region,

f ′(−4) = (−4− 2)(−2 + 3) = 8 > 0

f ′(0) = (−2)(3) = −6 < 0

f ′(3) = (3− 2)(3 + 3) = 6 > 0

Hence the completed sign-chart,
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By the First Derivative Test we conclude,

1. f(−3) = −27/3 + 9/2− 6(−3) = 27/2 is a local maximum.

2. f(2) = 8/3 + 4/2− 6(2) = −22/3 is a local minimum.

Example 6.1.14. Let f(x) = ex + x. Note that f ′(x) = ex + 1. This function has no critical points since
the equation ex + 1 = 0 has no solutions. It follows that y = ex + 1 has no local extrema. However, we can
deduce that f(x) is increasing on R since f ′(x) = ex + 1 ≥ 2 for all x ∈ R.

Example 6.1.15. Observe that f(x) = x

√
(x−1)2

x−1 for x 6= 1 and f(1) = 1 has critical number c = 1.
Moreover, the derivative changes signs at c = 1 since f ′(x) = −1 for x < 1 whereas f ′(x) = 1 for x > 1. Is
it the case that f(1) = 1 is a local maximum ? Does this contradict the First Derivative Test? Explain.

Example 6.1.16. Let f(x) = x4−12x2−5. Calculate f ′(x) = 4x3−24x = 4x(x2−6) = 3x(x+
√

6)(x−
√

6)
hence we find critical numbers c = 0,±

√
6. In invite the reader to confirm that the test points −3,−1, 1, 2

reside between the critical points and f ′(−3) < 0, f ′(−1) > 0, f ′(1) < 0 and f ′(3) > 0 therefore the sign-chart
for the derivative function is as follows:

We identify that f is increasing on (−
√

6, 0) ∪ (
√

6,∞) and it f is decreasing on (−∞,−
√

6) ∪ (0,
√

6). By
the first derivative test we observe that f(−

√
6) = 36 − 72 − 5 = −41 and f(

√
6) = 36 − 72 − 5 = −41 are

local minima whereas f(0) = −5 is a local maximum. The graph can be deduced from these facts.

Notice I did not even need to find the zeros of the graph to make a good sketch of the curve.

Example 6.1.17. Let f(x) = x
(1+x)2 . By quotient rule

d

dx

x

(1 + x)2
=

1(1 + x)2 − 2(1 + x)x

(1 + x)4
=

1− x
(1 + x)3

Thus the critical points are c = 1 and c = −1. The sign-chart is
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Observe that x = −1 is a VA and by the first derivative test f(1) = 1/4 is a local maximum. The function
is increasing on (−1, 1) and it is decreasing on (−∞, 1) ∪ (1,∞)

Example 6.1.18. Suppose f(x) = ecos(πx). We calculate by chain rule f ′(x) = −π sin(πx)ecos(πx). Note
that the exponential function is nonzero thus f ′(x) = 0 implies sin(πx) = 0, but we recall from our study of
trigonometry that the set of solutions are precisely those x ∈ R such that πx = nπ for some n ∈ Z. In this
example we find infinitely many critical points. In particular, cn = n implies f ′(cn) = 0. The sign-chart is

For each even integer 2n we apply first derivative test to find f(2n) = e is the global maximum of f and for
each odd integer 2n + 1 we apply first derivative test to find f(2n + 1) = 1/e is the global minimum of f .
The graph is sort of like an cosine graph, although it is bounded by 1/e ≤ ecos(πx) ≤ e and you can see the
shape not the same as cosine.
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I have pointed out a few maxima (2n, e) with yellow dots and minima (2n−1, 1
e ) with blue dots in the picture

above.

Example 6.1.19. Suppose f(x) = cos(ex). The chain rule provides f ′(x) = −ex sin(ex). We will find
infinitely many solutions for the critical number criteria f ′(x) = −ex sin(ex) = 0. Note ex 6= 0 for all x ∈ R
hence we must have sin(ex) = 0. Consequently we find solutions described implicitly by ex = nπ for n ∈ Z.
Since ex > 0 we have no solutions with n ≤ 0. If n > 0 then we can solve for x = ln(nπ) = ln(n) + ln(π).
Define cn = ln(n) + ln(π), then clearly f ′(cn) = 0 for each n ∈ N. The critical numbers c1, c2, . . . are not
evenly spaced. Instead, as n increases we know the ln(n) grows slower and slower which means the critical
numbers are closer and closer as x → ∞. Note that −ex sin(ex) changes from + to − if ex = 2nπ whereas
−ex sin(ex) changes from − to + if we cross ex = (2n− 1)π. Therefore, by first derivative test, f(c2n) = 1
is the global maximum which is attained at x = c2n for n ∈ N and f(c2n−1) = −1 is the global minimum
which is attained at x = c2n−1 for n ∈ N.

The yellow dots are at (c2n, 1) and the blue dots are at (c2n−1, 1) for n = 1, 2, 3, 4, 5.

Example 6.1.20. Let f(x) = xe−x. By the product rule, f ′(x) = e−x − xe−x = (1− x)e−x thus the critical
number if c = 1. The sign-chart is very simple here:

Therefore, by the first derivative test f(1) = 1/e is a local maximum. Moreover, the function is increasing
on (−∞, 1) and it is decreasing on (1,∞). We can see that f(1) = 1/e is also a global maximum for f since
f(x) ≤ 1/e for all x ∈ R.



6.1. GRAPHING WITH DERIVATIVES 187

Example 6.1.21. Let f(x) =
√

(x− 1)2 −
√

(x− 2)2. You should recognize3 these are formulas for the
absolute value function y = |x| shifted either one or two units right. We expect there will be two critical
points. Let us verify my conjecture,

f ′(x) =
d

dx

[√
(x− 1)2 −

√
(x− 2)2

]
=

2(x− 1)

2
√

(x− 1)2
− 2(x− 2)

2
√

(x− 2)2

=
(x− 1)

√
(x− 2)2 − (x− 2)

√
(x− 1)2√

(x− 1)2
√

(x− 2)2
.

You might be tempted to just cancel terms in the numerator and conclude f ′(x) = 0 for all x ∈ R. However,
this is not correct. In fact, f ′(1) and f ′(2) do not exist and f ′(x) = 2 for 1 < x < 2. Let us change notation
a bit so the problem becomes clearer, the trouble with this problem is that we really need to break it into cases
to see clearly:

√
(x− 1)2 = |x− 1| =

{
x− 1 if x > 1

1− x if x ≤ 1

√
(x− 2)2 = |x− 2| =

{
x− 2 if x > 2

2− x if x ≤ 2

Therefore,

f(x) = |x− 1| − |x− 2| =


−1 if x ≤ 1

2x− 1 if 1 ≤ x ≤ 2

1 if x ≥ 2

.

It follows that

f ′(x) =


0 if x < 1

2 if 1 < x < 2

0 if x > 2

.

we can show that f is continuous on R however the derivative f ′ is discontinuous at x = 1 and x = 2. In
fact, dom(f ′) = R − {1, 2}. The first derivative test does not apply to this example. Notice that the set of
critical points for f is (−∞, 1] ∪ [2,∞). Since the derivative is constant on (−∞, 1] and [2,∞) we find the

3 we could write
√

(x− 1)2 = ±(x−1), however I hope you realize that it is not correct to simply write
√

(x− 1)2 =
x− 1 for generic x. This mistake made many students miss this problem on a previous semester’s test
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function is constant on those intervals. (we already found this but I point out that the differential calculus
and our previous propositions on constant functions and derivatives do apply to this case even though the
first derivative test is non-applicable.)

6.1.2 concavity and the second derivative test

A function is concave-up on an interval J if the function has the shape of a bowl which is right-side up over
that interval J . A function is concave down on an interval J if the function has the shape of a bowl which
is up-side down over that interval J . In other words, a concave up function stays below the secant line but
a concave down function stays above the secant line.

Remark 6.1.22. (pre-calculus definition of geometric concavity, do not use later).

Suppose J = (a, b) then we define f to be concave down on (a, b) if

f(x) ≤ f(a) +
f(b)− f(a)

b− a
(x− a)

for all x ∈ (a, b). Likewise, we define f is concave-down on (a, b) if

f(x) ≥ f(a) +
f(b)− f(a)

b− a
(x− a)

If p ∈ dom(f) is a point for which the concavity of (p−δ1) is different than the concavity of (p, p+δ2)
for some δ1, δ2 > 0 then we call (p, f(p)) an inflection point

We should note these definitions are in some sense more general than the definition I offer below (however,
I argue this is not a good thing). For example, f(x) = 3− |x| would be judged concave down on (−a, a) for
any a > 0 by the definition above. On the other hand, f(x) = 3− |x| is both concave up and down on any
connected set not containing zero. In other words, functions made from lines piecewise joined yield some
seemingly contradictory statements. We should like our description to be locally consistent. In other words,
if a function is concave up on J then f ought also to be concave up on a connected subset of J . In my view
that makes the following a better definition:
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Definition 6.1.23. (calculus definition of geometric concavity, use later).

Let f be a function which is twice differentiable on some connected set J ,

1. f is concave up if the derivative of f is decreasing on J (abbreviated CU on J)

2. f is concave down if the derivative of f is increasing on J (abbreviated CD on J)

3. if p ∈ dom(f) is a point such that there exists δ > 0 such that f is concave up(down) on
(p−δ, p) and concave down(up) on (p, p+δ) then we say p or (p, f(p)) is an inflection point.
An inflection point is a point where the concavity changes.

Equivalence of definitions proof sketch: Consider this, if a function has a the shape of a bowl right
side up then the slopes of the tangent lines will increase as we increase x. On the other hand, if a function
has the shape of a bowl upside down then the slopes of the tangent lines will decrease as x increases. In
other words, the derivative is an increasing function where the function is concave-up and the derivative is
a decreasing function where the function is concave-down. This is the heart of the proof that the definition
given above is equivalent to the geometric definition for concavity.

Notice that the example f(x) = 3 − |x| escapes trouble in view of the definition above because we cannot
say that f is concave down on (−a, a) based on the calculus definition because the calculus-based criteria
below does not even apply since f ′(0) and f ′′(0) do not exist. Because increase and decrease allow equality
in these notes it is still the case that a line will be found both concave up and down since the derivative of a
line is a constant function. Intuitively, a line is between the cases of CU and CD. If we bend a line upwards
then it morphs into a CU graph whereas if we bend the line downward it morphs into a CD graph.

Remark 6.1.24.

One easy way to remember which is up and which is down is the following slogan:

concave up: is locally like a u concave down: is locally like a n .

This slogan is useful to help create graphs if you already know the concavity.

Incidentally, the term ”convex” was historically used for concave down and this term is still used in physics
particularly in the study of optics.

Example 6.1.25. If f(x) = x2 then f ′(x) = 2x. Notice that f ′′(x) = 2 > 0 therefore f ′ is an increasing
function on R. It follows that y = x2 is concave up on R.



190 CHAPTER 6. GEOMETRY AND DIFFERENTIAL CALCULUS

Notice that the tangents (in green) are under the graph since the function is CU everywhere.

Example 6.1.26. If f(x) = x3 then f ′(x) = 3x2. Notice that f ′′(x) = 6x is positive for x > 0 whereas
x < 0 implies f ′′(x) < 0. Therefore, f ′ is increasing on (0,∞) and f ′ is decreasing on (−∞, 0). It follows
that y = x3 is CU on (0,∞) and CD on (−∞, 0). Thus (0, 0) is an inflection point.

Notice that the tangents (in green) are over the graph where it is CD (x < 0) whereas the tangents are under
the graph where the function is CU (x > 0).

Theorem 6.1.27. sign-charts for derivatives reveal increase and decrease of function.

Suppose f ∈ C2(a, b) (has continuous 2nd derivative) and (a, b) contains a critical number c then

1. if f ′′(x) > 0 for all x ∈ (a, b) then f is concave up on (a, b).

2. if f ′′(x) < 0 for all x ∈ (a, b) then f is concave down on (a, b).

3. if f ′′(c) = 0 then this test is inconclusive.

I emphasize that when the second derivative is zero we might find an inflection point, but it doesn’t have to
be the case. The same is true for critical points. When a critical point is not at a local max or min it could
be an inflection point, but it might be something else, there are countless other options4. The following
theorem is geometrically obvious.

Theorem 6.1.28. Second Derivative Test.

Suppose f has a critical number c such that f ′(c) = 0 and f ′′(x) is exists for x ∈ Bδ(c) for some
δ > 0 then

1. if f ′′(c) > 0 then f(c) is a local minimum at c.

2. if f ′′(c) < 0 then f(c) is a local maximum at c.

3. if f ′′(c) = 0 then this test is inconclusive.

Proof: suppose f ′′(c) > 0 and f ′(c) = 0. Notice that f ′ is continuous on Bδ(c) for some δ > 0 since f ′′ is
defined on that set and differentiability of f ′ implies continuity of f ′. Furthermore, notice that f ′ is strictly

4challenge: find me an example of a continuous function which has a nonzero derivative and a critical point which
is neither at a local maximum, minimum or inflection point.
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increasing on Bδ(c) therefore f ′ is an injection on Bδ(c). Since f ′(c) = 0 and f ′ is strictly increasing it
follows that f ′(x) < 0 for x ∈ Bδ(c) with x < c and f ′(x) > 0 for x ∈ Bδ(c) with x > c therefore by the
First Derivative Test we conclude f(c) is a local minimum. A similar argument applies to case 2. �

We will discover another proof for the second derivative test when we discuss Taylor’s Theorem later in this
chapter.

In the examples below we aim to analyze the graph of the given function with the aid of
concavity and the second derivative test.

Example 6.1.29. Suppose f(x) = e−x
2

then f ′(x) = −2xe−x
2

and f ′′(x) = −2e−x
2

+ 4x2e−x
2

= 2(2x2 −
1)e−x

2

. Therefore, we find c = 0 is the critical point and x = ±1/
√

2 are possible points of inflection. We
assemble the sign charts for f ′ and f ′′ to guide our thoughts

We identify that f(0) = 1 is a local maximum since f ′′(0) < 0. We can read from the sign-chart for f ′′

that f is CU on (−∞,−1/
√

2) and (1/
√

2,∞) and f is CD on (−1/
√

2, 1/
√

2). Therefore, (±1√
2
, e−

1
2 ) are

inflection points.

Perhaps you recognize this function, it’s the Gaussian function. The graph above is called the Gaussian
distribution for its application to probability.

Example 6.1.30. Suppose f(x) = 3x5 − 20x4 + 40x3. Differentiating once we find f ′(x) = 15x4 − 80x3 +
120x2. Differentiate once more to find f ′′(x) = 60x3 − 240x2 + 240x. We can factor f ′(x) and f ′′(x) to
make clear the critical points and possible inflection points:

f ′(x) = 5x2(3x2 − 16x+ 24) f ′′(x) = 60x(x2 − 4x+ 4) = 60x(x− 2)2

Thus the sign-charts for f ′ and f ′′ are: ( need to use a few test points to pin down the signs, I leave such
details to the reader)
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We find the function is increasing on R and of the two possible inflection points only (0, 0) is a point of
inflection. This quintic polynomial has a graph that much resembles the standard cubic function. We find
y = f(x) is CU on (0,∞) and CD on (−∞, 0).

Example 6.1.31. Suppose f(x) = 1
x+2 + 1

x−2 . If we make a common denominator we find f(x) = 2x
x2−4 .

We differentiate (the original given formula),

f ′(x) =
−1

(x+ 2)2
− 1

(x− 2)2
= − 2x2 + 8

(x+ 2)2(x− 2)2

then differentiate again (using the unsimplified f ′(x) as starting point),

f ′(x) =
2

(x+ 2)3
+

2

(x− 2)3
= 2

2x3 + 48x

(x+ 2)3(x− 2)3
=

4x(x2 + 24)

(x+ 2)3(x− 2)3
.

We find critical points c = −2, 2 and points of possible inflection at −2, 0, 2.

We find the function is decreasing on R and of the three possible inflection points only (0, 0) is a point of
inflection, the concavity also changes at x = ±2 but those are VA so we shouldn’t say those are points of
inflection. This rational function has a graph that is CU on (−2, 0) and (2,∞) and it is CD on (−∞,−2)
and (0, 2).
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One physical interpretation mathematics found in the previous example is that y = f(x) could be a graph
of the electric potential along the x-axis for two positive point charges placed at x = −2 and x = 2. A
divergence in the potential signals the presence of localized charge.

Example 6.1.32. Suppose f(x) = sec(x) then f ′(x) = sec(x) tan(x) and f ′′(x) = sec2(x) tan(x) + sec3(x)
by the product rule. Let us write these in terms of sine and cosine since we have a complete and working
knowledge of all the zeros for sine and cosine.

f(x) =
1

cos(x)

df

dx
=

sin(x)

cos2(x)

d2f

dx2
=

sin(x) + 1

cos3(x)

It follows that critical points arise from where sin(x) = 0 or where f ′(x) does not exist because cos(x) = 0;
that cn = π

2n for n ∈ Z. We also see that the odd-integer critical points are also locations of possible concavity
change since a vanishing cosine makes f ′′(x) undefined. Note that sin(x) = −1 has solutions xj = π

2 4j − 1
for j ∈ Z. For example, j = 0 gives sin(−π2 ) = −1 and j = 1 gives sin( 3π

2 ) = −1. These points are included
already as a subset of the zeros of cosine. The concavity can only change at a zero of cosine.

Notice that the local maximum of 1 is attained at x = 2nπ for n ∈ Z whereas a local minimum of 1 is attained
at x = (2n− 1)π for n ∈ Z. The fact these are respectively local maximums and minimums is verified by the
second derivative test since f ′′(2nπ) = 1 > 0 and f ′′((2n− 1)π) = −1 < 0 for all n ∈ Z. Naturally the first
derivative test agrees. Both tests are evident from the sign-chart given above.
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Remark 6.1.33. concerning on case 3 of 2nd Derivative Test

Maybe you are wondering, what is an example of a function which falls into case 3 of the derivative
test? One simple example is a line y = f(x) = mx + b which has f ′(x) = m. Clearly f and f ′ are
continuous everywhere. Notice f ′′(x) = 0 for each x ∈ R. There are two cases:

1. m = 0, thus f(x) = b and y = b is the maximum and minimum value of the function at all
points.

2. m 6= 0, then f(x) = mx+ b and the function has no extrema with respect to R.

Notice also that g(x) = x4 + 1 and h(x) = x5 + 4 both have critical number c = 0 and g′′(0) =
h′′(0) = 0 however (0, g(0)) is a local minimum whereas (0, h(0)) is an inflection point. The second
derivative is too clumsy to detect the difference. Later in this chapter we’ll discover that Taylor’s
polynomial approximation theorem covers cases like g or h.

Problems

Problem 6.1.1. hope to add problems in the future..
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.
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6.2 closed interval method

The following theorem details how to actually find the extrema the Extreme Value Theorem indicated exist.
If f is continuous on [a, b] then the Extreme Value Theorem says there exist global extrema with respect to
[a, b]. If an extrema are in the interior then it must also be a local extrema thus by Fermat’s theorem it will
occur at a critical number. Otherwise, the extrema are at the endpoints. Therefore, if we check endpoints
and critical points we will find the extrema.

Theorem 6.2.1. closed interval method.

If we are given function f which is continuous on a closed interval [a, b] the we can find the absolute
minimum and maximum values of the function over the interval [a, b] as follows:

1. Locate all critical numbers x = c in (a, b) and calculate f(c).

2. Calculate f(a) and f(b).

3. Compare values from steps 1. and 2. the largest of these values is the absolute maximum, the
smallest (or largest negative) value is the absolute minimum of f on [a, b].

Example 6.2.2. Let f(x) = sin(x) find absolute extrema of f relative to interval 0 ≤ x ≤ 2π. Note
f ′(x) = cos(x) and cos(x) = 0 has solutions x = π

2 ,
π
2 ∈ [0, 2π].

f(0) = sin(0) = 0, f(π2 ) = sin(π2 ) = 1, f(
3π

2
) = sin( 3π

2 ) = −1, sin(2π) = 0

Therefore, by closed interval method f(π2 ) = 1 is the maximum and f( 3π
2 ) = −1 is the minimum of f(x) =

sin(x) on the interval [0, 2π].

Example 6.2.3. Let f(x) = (x− 3)(x− 4) find absolute extrema of f on [0, 1]. Calculate f ′(x) = (x− 4) +
(x − 3) = 2x − 7 thus c = − 7

2 is a critical point. Compute the values of f(x) at the critical points inside
[0, 1] and the endpoints (there are no critical points in [0, 1]):

f(0) = 12, f(1) = 6.

Therefore, f(0) = 12 is the absolute maximum and f(1) = 6 is the absolute minimum of f(x) = (x−3)(x−4)
on [0, 1].

Example 6.2.4. Let f(x) = x4− 2x2 + 3 find absolute extrema of f on [0, 2]. Note that f ′(x) = 4x3− 4x =
4x(x2 − 1) = 4x(x + 1)(x − 1) thus c = 0,−1, 1 are critical points for f . Only 0, 1 ∈ [0, 2]. Calculate the
values of the potential extrema:

f(0) = 3, f(1) = 2

Thus, f(1) = 2 is the minimum and f(0) = 3 is the maximum of f on [0, 2].

Example 6.2.5. Let f(x) = e−x sin(x). Find the extreme values of f on [0, 4].

f ′(x) = − sin(x)e−x + cos(x)e−x = (cos(x)− sin(x))e−x.

Solutions of cos(x) = sin(x) are critical points. If you picture the graphs of sine and cosine on the same plot
then the solutions are given from the points of intersection. In particular, c = π

4 +nπ for n ∈ Z. The critical
points in [0, 4] are π

4 and 5π
4 ≈ 3.93. Calculate,

f(π4 ) = e−
π
4 sin(π4 ) ≈ 0.32
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f( 5π
4 ) = e−

5π
4 sin( 5π

4 ) ≈ −0.0139

f(0) = e0 sin(0) = 0

f(4) = e−4 sin(4) = −0.138

We find f( 5π
4 ) = −0.0139 is the minimum and f(π4 ) = 0.32 is the maximum of f on the interval [0, 4]. The

graph has blue dots to illustrate the extrema.

I suppose we ought to be happy the last example wasn’t f(x) = e−x sin(11x). That would have required
more calculation.

Physically these are very interesting functions. You should see it again when you study springs with friction
or RLC circuits.

Problems

Problem 6.2.1. hope to add problems in the future..
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.
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6.3 optimization

I have preserved the format of these examples from an earlier edition of my notes. If I have any advice about
optimization problems or word problems more generally it is simply to write down your thoughts. Draw
a picture. Label unknown quantities. Once you find a solution, check it against common sense. Anyway,
people have written whole books on the proper way to teach problem solving. I assume the reader is mature
enough that no large amount of coddling is required. in a word: think.

Example 6.3.1.
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Example 6.3.2.
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Example 6.3.3.
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Example 6.3.4.

Example 6.3.5.
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Example 6.3.6.

Problems

Problem 6.3.1. hope to add problems in the future..
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.
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6.4 to ±∞ and beyond

The behavior a function for x >> 0 or for x << 0 is captured by the limit5 of the function at ±∞,

Definition 6.4.1. limits at ∞ or −∞.

The limit at ∞ for a function f is L ∈ R if the values f(x) can be made arbitrarily close to L for
inputs x sufficiently large. We write

lim
x→∞

f(x) = L

in this case. To be more precise we should say that limx→∞ f(x) = L iff for each ε > 0 there exists
N ∈ R with N > 0 such that if x > N then |f(x)− L| < ε. Likewise,

lim
x→−∞

f(x) = L

iff for each ε > 0 there exists M ∈ R with M < 0 such that if x < M then |f(x)− L| < ε.

Geometrically this definition essentially says that if we pick a band of width 2ε about the line y = L then
for points to the right(or left) of N (or M) the graph y = f(x) fits inside the band. In the picture below
you can see that for any ε > 0 or β > 0 we can find a band about the limiting value in which the tail of the
graph can be fit.

Given the graph above we expect limx→∞ f(x) = L1 and limx→−∞ f(x) = L2.

5we did discuss the values of the function tending to arbitrarily large positive or negative values with respect to
some finite limit point. I would say those are limits which go to ∞ whereas this section is about limits which are
taken at ±∞. These concepts are not mutually exclusive; limx→∞ e

x =∞.
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Example 6.4.2. Let f(x) = 1
x . Calculate the limit of f(x) at ∞. Observe that,

f(10) = 0.1, f(100) = 0.01, f(1000) = 0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and larger. This
leads us to suspect,

lim
x→∞

1

x
= 0.

In other words, if we divide something nonzero by a very big number then we get something very small. This
sort of limit is not ambiguous, to determine the answer intuitively we either need to think about a table of
values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let ε > 0 choose N = 1/ε and observe that for
x > N = 1/ε it follows that 1/x < ε. Consequently, x > N implies |f(x) − 0| = | 1x | =

1
x < ε. Hence by the

precise definition limx→∞
1
x = 0. �

The limits at −∞ are much the same.

Example 6.4.3. Let f(x) = 1
x . Calculate the limit of f(x) at −∞. Observe that,

f(−10) = −0.1, f(−100) = −0.01, f(−1000) = −0.001.

We see that the values of the function are getting closer and closer to zero as x gets larger and negative.
This leads us to suspect,

lim
x→−∞

1

x
= 0.

In other words, if we divide something nonzero by a very big negative number then we get something very
small and negative. This sort of limit is not ambiguous, to determine the answer intuitively we either need
to think about a table of values or perhaps a graph.

Or if you want to be rigorous you can argue as follows: Let ε > 0 choose M = −1/ε and observe that for
x < M = −1/ε it follows that −1/x < ε. Consequently, x < N implies |f(x)− 0| = | 1x | = −

1
x < ε. Hence by

the precise definition limx→−∞
1
x = 0. �

Clearly we’d prefer to avoid the picky eps-type arguments if possible. Towards that end I’m offering proofs
for a number of standard results and theorems so that we have justification for later algebraic or intuitive
arguments to solve limits at ±∞. As always it is still important we remember at the definition is actually
precise even if we sometimes allow some amount of intuitive argumentation.

Example 6.4.4. Let f(x) = 1/xn where n > 0. Calculate the limit of f(x) at ∞. Observe that,

f(10) = 1/10n, f(100) = 1/100n, f(1000) = 1/1000n.

We see that the values of the function are getting closer and closer to zero as x gets larger and larger.
This leads us to suspect,

lim
x→∞

1

xn
= 0.

Let ε > 0 choose N = 1/ε
1
n . Suppose x > N = 1/ε

1
n thus 1/x < ε

1
n which implies 1/xn < (ε

1
n )n = ε.

Consider then, if x > N then
|f(x)− 0| = |1/xn| = 1/xn < ε.

Therefore by the precise definition for limits at infinity, limx→∞
1
xn = 0. �
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The graphical significance of all three examples thus far considered is that the function has a horizontal
asymptote of y = 0 as x→ ±∞.

Definition 6.4.5. horizontal asymptotes.

If limx→∞ f(x) = L then the function f is said to have a horizontal asymptote of y = L at ∞.
If limx→−∞ f(x) = L then the function f is said to have a horizontal asymptote of y = L at
−∞.

Example 6.4.6. Let f(x) = tan−1(x). We saw in the preliminaries chapter that the inverse tangent function
had horizontal asymptotes of y = π

2 for x >> 0 and y = −π2 for x << 0. Therefore,

lim
x→∞

tan−1(x) =
π

2
lim

x→−∞
tan−1(x) = −π

2
.

Vertical asymptotes of the function correspond to horizontal asymptotes for the inverse function6 We can
also discuss limits which go to infinity at infinity. It’s just the natural merger of both definitions but I state
it here for completeness.

Definition 6.4.7. infinite limits at infinity.

The limit at ∞ for a function f is ∞ iff for each M > 0 there exists N > 0 such that for x > N we
find f(x) > M . We denote

lim
x→∞

f(x) =∞.

in this case. Likewise, the limit at −∞ for a function f is ∞ iff for each M > 0 there exists N < 0
such that if x < N then f(x) > M . We denote this by

lim
x→−∞

f(x) =∞.

Similarly, if for each M < 0 there exists N > 0 such that x > N implies f(x) < M we say
limx→−∞ f(x) = −∞. Finally, if for each M < 0 there exists N < 0 such that x < N implies
f(x) < M we say limx→−∞ f(x) = −∞.

Example 6.4.8. I would say that the limit below are not indeterminant. Their values can be deduced by
straightforward analysis from the definition. The formal proof of these claims I leave to the reader.

lim
x→∞

1

x
= 0 lim

x→−∞

1

x
= 0 lim

x→0+

1

x
=∞ lim

x→0−

1

x
= −∞ lim

x→0

1

x
= dne

lim
x→∞

1

x2
= 0 lim

x→−∞

1

x2
= 0 lim

x→0+

1

x2
=∞ lim

x→0−

1

x2
=∞ lim

x→0

1

x2
=∞

lim
x→∞

1√
x

= 0 lim
x→−∞

1√
x

=? lim
x→0+

1√
x

=∞ lim
x→0−

1√
x

=? lim
x→0

1√
x

= dne

lim
x→∞

√
x =∞ lim

x→−∞

√
x =? lim

x→0+

√
x = 0 lim

x→0−

√
x =? lim

x→0

√
x = dne

lim
x→∞

x2 =∞ lim
x→−∞

x2 =∞ lim
x→0+

x2 = 0 lim
x→0−

x2 = 0 lim
x→0

x2 = 0

lim
x→∞

x3 =∞ lim
x→−∞

x3 = −∞ lim
x→0+

x3 = 0 lim
x→0−

x3 = 0 lim
x→0

x3 = 0.

6Challenge: what are the horizontal asymptotes of y = tan−1(3x) ?
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I have used ”?” instead of d.n.e. in a few places just to make it fit. Those limits are taken at a limit point
which is not in the domain of the function, in some cases not even on the boundary of the function. If we
can’t take values close to the limit point then by default the limit is said to not exist, in which case we use
”d.n.e.” or ”dne” as a shorthand.

We can also have limits which fail to exist at plus or minus infinity due to oscillation. All of the functions
in the next example fall into that category.

Example 6.4.9. the following limits all involve cyclic functions. They never settle down to one value for
large positive or negative input values so the limits d.n.e.

lim
x→∞

sin(x) = d.n.e. lim
x→∞

cos(x) = d.n.e. lim
x→∞

tan(x) = d.n.e.

lim
x→−∞

sin(x) = d.n.e. lim
x→−∞

cos(x) = d.n.e. lim
x→−∞

tan(x) = d.n.e.

lim
x→∞

csc(x) = d.n.e. lim
x→∞

sec(x) = d.n.e. lim
x→∞

sec(x) = d.n.e.

lim
x→−∞

csc(x) = d.n.e. lim
x→−∞

sec(x) = d.n.e. lim
x→−∞

sec(x) = d.n.e.

Example 6.4.10. The interplay between a function and its inverse is especially enlightening for ln(x), sin−1(x), cos−1(x).
I refer the reader to the earlier chapter on preliminary material if it is forgotten by now.

lim
x→∞

sin−1(x) = d.n.e. lim
x→∞

cos−1(x) = d.n.e. lim
x→∞

tan−1(x) = π/2

lim
x→−∞

sin−1(x) = d.n.e. lim
x→−∞

cos−1(x) = d.n.e. lim
x→−∞

tan−1(x) = −π/2

lim
x→∞

ex =∞ lim
x→∞

e−x = 0 lim
x→∞

(1/2)x = 0

lim
x→−∞

ex = 0 lim
x→−∞

e−x =∞ lim
x→−∞

(1/2)x =∞

The domain of sin−1(x) and cos−1(x) will be the range of sine and cosine respectively; that is dom(sin−1(x)) =
[−1, 1] and dom(cos−1(x)) = [−1, 1] so clearly the limits at plus and minus infinity are not sensible as inverse
sine and cosine are not even defined at ±∞. In contrast the range of the exponential function is all positive
real numbers and ln(x) is the inverse function of ex thus

lim
x→−∞

ln(x) = d.n.e. lim
x→0+

ln(x) = −∞ lim
x→∞

ln(x) =∞

For x < 0 the ln(x) is not real, the middle limit you should have thought about in the earlier discussion of
limits. The last one is true although an uncritical appraisal of the graph y = ln(x) gives the appearance of a
horizontal asymptote, but appearances can be deceiving. I’ve assigned the proof as homework.

The following lemma connects limits at ±∞ with one-sided limits at zero.

Lemma 6.4.11.

lim
x→∞

f(x) = lim
t→0+

f(1/t) and lim
x→−∞

f(x) = lim
t→0−

f(1/t).

The equalities above apply to the case that the limit exists as well as the cases where the limits do
not exist. We mean for the equality to denote that both limits diverge in the same manner.

Proof: Let’s begin with the case that limx→∞ f(x) = L ∈ R. Let ε > 0 and note the following inequalities
are equivalent:

0 < M < x ⇔ 0 <
1

x
<

1

M



6.4. TO ±∞ AND BEYOND 209

Therefore, 0 < 1
x <

1
m implies |f(x)− L| < ε which indicates that

lim
1
x→0+

f(x) = L hence using t = 1/x we find lim
t→0+

f(1/t) = L.

The proof limx→−∞ f(x) = limt→0− f(1/t) ∈ R is similar.

Suppose limx→−∞ f(x) = ∞. It follows that for each N > 0 there exists M < 0 such that x < M implies
f(x) > N . Note that 1

M < 1
x is equivalent with x < M thus 1

M < 1
x < 0 implies f(x) > N . But the last

string of inequalities yields that

lim
1
x→0−

f(x) =∞ hence using t = 1/x we find lim
t→0−

f(1/t) =∞.

Proof for other cases are similar and left to the reader. The basic point is that if x→ ±∞ then t = 1
x → 0±. �

With the little lemma above in mind we see that all the limit theorems transfer over to limits at ±∞ since
each such limit is in 1-1 correspondence with a one-sided limit at zero and we already proved the limit laws
for limits at zero. Rather than restating all the limit laws again I will illustrate by example. In fact, let’s
get straight to the fun part: indeterminant limits.

6.4.1 algebraic techniques for calculating limits at ±∞

Up to this point I have attempted to catalogue the basic results. I’m sure I forgot something important,
but I hope these examples give you enough of a basis to do those limits which are unambiguous at plus or
minus infinity. There is another category of problems where the limits which are given are not obvious, there
is some form of indeterminancy. All the same indeterminant forms (see defn. 3.4.4 ) arise again and most
of the algebraic techniques we used back in section 3.4 will arise again here although perhaps in a slightly
altered form.

The good news is that limits at infinity enjoy all the same properties as limits which are taken at a
finite limit point, at least in as much as the properties make sense. Of course we can only apply the limit
properties when the values of the limit are finite. For example,

lim
x→∞

(x− 2x) = lim
x→∞

(x) + lim
x→∞

(−2x) =∞−∞

is not valid because you might be tempted to cancel and find limx→∞(x − 2x) = 0 yet limx→∞(x − 2x) =
limx→∞(−x) = −∞ is the correct result. So we should only split limits by the limit laws when the subsequent
limits are finite. That said, I do admit there are certain cases it doesn’t hurt to apply the limit laws even
though the limits are infinite. In particular, suppose c 6= 0, if lim f =∞ then lim cf = c lim f = c∞ provided
we agree to understand that c∞ =∞ for c > 0 whereas c∞ = −∞ if c < 0. Such statements are dangerous
because the reader may be tempted to apply laws of arithmetic to expressions involving ∞ and it’s just
not that simple. We should always remember that ∞ is just a notation for a particular limiting process in
calculus7

7in complex variables one can actually add the point at infinity and use the extended complex numbers. In fact,
some authors use a similar idea for calculus, they introduce the so-called extended real numbers or the ”really long
line” of R ∪ {∞} ∪ {−∞}. If this sort of thing seems interesting to you then perhaps you ought to read the text
Elementary Calculus: An Infinitesimal Approach by H. Jerome Keisler
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Example 6.4.12. this one is type ∞∞ to begin.

lim
x→∞

(
x+ 3

x− 2

)
= lim
x→∞

( x
x + 3

x
x
x −

2
x

)
divided top and bottom by x

= lim
x→∞

(
1 + 0

1− 0

)
c/x→ 0 as x→∞

= 1.

Example 6.4.13. this one is also of type ∞∞ to begin.

lim
x→∞

(
x3 + 3x− 2

x4 − 2x+ 1

)
= lim
x→∞

( 1
x + 3

x3 − 2
x4

1− 2
x3 + 1

x4

)
divided top and bottom by x4

= lim
x→∞

(
0 + 0− 0

1− 0 + 0

)
for n = 1, 2, 4, c/xn → 0 as x→∞

= 0.

Example 6.4.14. again, type ∞∞ to begin.

lim
x→−∞

(
x3 + 3x− 2

x2 − x+ 7

)
= lim
x→−∞

(
x+ 3

x −
2
x2

1− 2
x + 7

x2

)
divided top and bottom by x4

= lim
x→−∞

(
x

1

)
for n = 1, 2, c/xn → 0 as x→ −∞

= −∞.

Another way of thinking about this one is to put in very big negative values of x. For example, when
x = −1000 we find

x3 + 3x− 2

x2 − x+ 7
=
−10003 − 3000− 2

10002 + 1000− 2
≈ −10003

10002
= −1000 = x

This sort of reasoning is a good method to try if you are lost as to what algebraic step to apply. There
are problems which no amount of algebra will fix, sometimes considering numerical evidence is the best way
to figure out a limit. However, for some functions −1000 is not big enough, take f(x) = 1

2x−1000 we find
f(−1000) = −1/3. But, you can show f(x)→ 0 as x→ −∞. To be safer you should experiment with more
than one number, or better yet think.

Example 6.4.15. you guessed it, type ∞∞ to begin.

lim
x→∞

( √
2x4 + 3x− 2

x2 − x+ 7

)
= lim
x→∞

( 1
x2

√
2x4 + 3x− 2

1
x2

(
x2 − x+ 7

) )

= lim
x→∞

( √
2x4+3x−2

x4

1− 1
x + 7

x2

)

= lim
x→∞

( √
2 + 3

x3 − 2
x4

1− 1
x + 7

x2

)
=
√

2.
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Example 6.4.16. this has type 0 · ∞ to begin.

lim
x→∞

(
e−x2x

)
= lim
x→∞

(
eln(2x)e−x

)
sneaky step

= lim
x→∞

(
ex ln(2)e−x

)
= lim
x→∞

(
ex(ln(2)−1)

)
= 0.

In the last step I noticed ln(2)−1 ≈ 0.692−1 < 0 thus the limit amounts to the exponential function evaluated
at ever increasing large negative values which indicates the limit is zero. This example really belongs in the
section with l’Hopital’s Rule, I include it now for novelty only.

We find that limits of type ∞/∞ can result in many different final answers depending on how the indeter-
minancy is resolved. The next example is more general, I think it is healthy to think about something a
little more abstract from time to time. The strategy used is essentially identical to the strategy employed in
several of the preceding examples.

Example 6.4.17. let P be a polynomial of degree p and let Q be a polynomial of degree q. This means there
exist real coefficients ap, ap−1, . . . , a1, a0 and bq, bq−1, . . . , b1, b0 such that ap 6= 0 and bq 6= 0 where

P (x) = apx
p + · · ·+ a1x+ a0 Q(x) = bqx

q + · · ·+ b1x+ b0

Consider f(x) = P (x)/Q(x). There are three cases.

1. If p > q then p− q > 0 hence

lim
x→∞

(
P (x)

Q(x)

)
= lim
x→∞

(
apx

p + · · ·+ a1x+ a0

bqxq + · · ·+ b1x+ b0

)
= lim
x→∞

(
apx

p−q + · · ·+ a1
xq−1 + a0

xq

bq + · · ·+ b1
xq−1 + b0

xq

)
= lim
x→∞

(
ap
bq
xp−q + · · ·+ a1

bqxq−1
+

a0

bqxq

)
= ±∞.

In particular if ap/bq > 0 then ∞ is obtained whereas if ap/bq < 0 then −∞ is the answer.

2. If p < q then q − p > 0 hence

lim
x→∞

(
P (x)

Q(x)

)
= lim
x→∞

(
apx

p + · · ·+ a1x+ a0

bqxq + · · ·+ b1x+ b0

)
= lim
x→∞

(
apx

p−q + · · ·+ a1
xq−1 + a0

xq

bq + · · ·+ b1
xq−1 + b0

xq

)
= lim
x→∞

(
ap
bq

1

xq−p
+ · · ·+ a1

bqxq−1
+

a0

bqxq

)
= 0.
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3. If p = q then

lim
x→∞

(
P (x)

Q(x)

)
= lim
x→∞

(
apx

p + · · ·+ a1x+ a0

bqxq + · · ·+ b1x+ b0

)
= lim
x→∞

(
apx

p−q + · · ·+ a1
xq−1 + a0

xq

bq + · · ·+ b1
xq−1 + b0

xq

)
= lim
x→∞

(
ap
bq

+ · · ·+ a1

bqxq−1
+

a0

bqxq

)
=
ap
bq
.

In each case my goal was to simplify the denominator so I could focus on the behavior of the numerator.
Very similar arguments will work for x→ −∞.

In case you forgot, a function f is said to be bounded if there exist m,M ∈ R such that m < f(x) < M for
all x ∈ dom(f).

Example 6.4.18. we can throw away a bounded function in a sum when the other function in the sum is
unbounded, here are two examples of this idea in action:

lim
x→∞

(sin(x) + ex) = lim
x→∞

(ex) =∞

lim
x→−∞

(x+ 2) = lim
x→−∞

(x) = −∞.

Example 6.4.19. if we take a function f(x) with a known limit of L ∈ R or ±∞ as x→ ±∞ then the limit
of f(x+ a) for a ∈ R is the same for x→ ±∞. For example,

lim
x→∞

(ex) =∞ =⇒ lim
x→∞

(ex+3) =∞

lim
x→−∞

(
1

x2

)
= 0 =⇒ lim

x→−∞

(
1

(x− 7)2

)
= 0

lim
x→∞

(tan−1(x)) =
π

2
=⇒ lim

x→∞
(tan−1(x+ 2)) =

π

2
.

Example 6.4.20. in a contest between power functions the largest degree wins.

lim
x→∞

(x3 − x2) = lim
x→∞

(x3) =∞.

lim
x→∞

(x3 − x4) = lim
x→∞

(−x4) = −∞.

On the other hand the exponential function will win against a polynomial because eventually the exponential
function’s values will totally dwarf the power function’s values.

lim
x→∞

(x3 − ex) = lim
x→∞

(ex) =∞.

lim
x→−∞

(2−x + x) = lim
x→−∞

(2−x) =∞.

How would we prove such a claim?
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Example 6.4.21. limits of type ∞−∞ can sometimes be dealt with via the rationalization technique:

lim
x→∞

(x−
√
x) = lim

x→∞

(
x+
√
x

x+
√
x

(x−
√
x)

)
= lim
x→∞

(
x2 − x
x+
√
x

)
= lim
x→∞

(
x− 1

1 +
√
x
x

)
= lim
x→∞

(
x− 1

1 +
√

1/x

)
= lim
x→∞

(x)

=∞.

Example 6.4.22. this limit is also of type ∞−∞ but in this case the −∞ wins.

lim
x→−∞

(x+
√
x2 + 4x) = lim

x→−∞

(
x−
√
x2 + 4x

x−
√
x2 + 4x

[
x+

√
x2 + 4x

])
= lim
x→−∞

(
x2 − x2 − 4x

x−
√
x2(1 + 4/x)

)
= lim
x→−∞

(
−4x

x−
√
x2
√

1 + 4/x

)
= lim
x→−∞

(
−4x

x+ x
√

1 + 4/x

)
= lim
x→−∞

(
−4

1 +
√

1 + 4/x

)
= −2.

Of course, similar looking problems might have ∞ as the answer:

lim
x→−∞

(
x−

√
2x2 + 4x

)
= lim
x→−∞

(
x+
√

2x2 + 4x

x+
√

2x2 + 4x

[
x−

√
2x2 + 4x

])
= lim
x→−∞

(
x2 − 2x2 − 4x

x+
√

2x2 + 4x

)
= lim
x→−∞

(
−x2 − 4x

x+
√

2x2 + 4x

)
= lim
x→−∞

(
−x− 4

1−
√

2 + 4/x

)
=∞.

It is also possible for the type ∞−∞ to resolve to a finite limit.
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Example 6.4.23. when dealing with square roots it is important that you remember that the laws of exponents

indicate 1
x

√
a+ b =

√
1
x2 (a+ b). We assume that a, c > 0 in this problem. Consider,

lim
x→∞

(√
ax2 + bx+ c√
cx2 + dx+ e

)
= lim
x→∞

( 1
x

√
ax2 + bx+ c

1
x

√
cx2 + dx+ e

)

= lim
x→∞

(√ax2+bx+c
x2√

cx2+dx+e
x2

)

= lim
x→∞

(√
a+ b/x+ c/x2√
c+ d/x+ e/x2

)
=

√
a

c
.

Example 6.4.24. The Squeeze Theorem applies to limits at ±∞. Suppose we are given a function f such
that

2

π
tan−1(x) ≤ f(x) ≤

√
4x2 + 1

x− 3

for all x ≥ 14, 000, 000, 000, 000 (national debt 2010). We can calculate the limit at ∞ via the Squeeze
Theorem. Observe that

lim
x→∞

(
2

π
tan−1(x)

)
=

2

π
· π

2
= 1

lim
x→∞

( √
4x2 + 1

2x− 3

)
= lim
x→∞

( √
4 + 1/x2

2− 3/x

)
=
√

4/2 = 1.

Therefore, by the Squeeze Theorem, limx→∞ f(x) = 1.

Example 6.4.25. (an example of what we can’t do easily in this section) the infinite limit view of e. Consider
the following limit:

lim
x→∞

(
1 +

1

x

)x
= e

If you can show that this definition is compatible with our previous implicit definition of e:

lim
h→0

(
eh − 1

h

)
= 1.

then I’d be impressed8. The limx→∞

(
1 + 1

x

)x
is type 1∞ and we have yet to develop the best tools to deal

with such limits.

8page 444 of Stewart together with some thinking will do it
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6.4.2 asymptotes in general

This section currently being remodelled. Should post new version in the future.
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.
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.

Problems

Problem 6.4.1. hope to add problems in the future..
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6.5 l’Hopital’s rule

In earlier sections we were able to resolve many indeterminant limits with purely algebraic arguments. You
might have noticed we have not really tried to use calculus to help us solve limits better. In our viewpoint,
limits were just something we needed to do in order to carefully define the derivative. However, we were
certainly happy enough once those limits vanished and were replaced by a few essentially algebraic rules.
Linearity, product, quotient and chain rules all involve a limiting argument if we consider the technical
details. The fact that we can do calculus without dwelling on those details is in my view why calculus is so
beautifully simple.

In this section we will learn about l’Hopital’s Rule which allows us to use calculus to resolve limits which
are indeterminant. We need to have limits of type ∞/∞ or 0/0 in order to apply the rule. Often we will
need to rewrite the given expression in order to change it to either type ∞/∞ or 0/0. We will see that
∞−∞, 1∞,∞0, 00 can all be resolved with the help of l’Hopital’s Rule.

l’Hopital’s Rule says that the limit of an indeterminant quotient of functions should be the same as the limit
of the quotient of the derivatives of those functions. Essentially the idea is to compare how the numerator
changes verses the how the denominator changes. This can be done at a finite limit point or with limits at
±∞.

I will give a good proof of the l’Hopital’s rule in a later section, but my proof in this section is only for a
relatively special case. l’Hopital’s Rule holds in a context more general than the assumptions for my proof.
It turns out that the extended law of the mean is needed to prove both l’Hopital’s rule and Taylor’s polyno-
mial approximation theorem with Lagrange’s form of the remainder. We postpone those arguments for later.

Theorem 6.5.1. l’Hopital’s Rule

Suppose that lim f
g is of type 0

0 or ∞∞ then

lim

(
f

g

)
= lim

(
f ′

g′

)
.

where equality includes all cases including those divergent cases. Note lim is meant to denote both
left, right and double-sided limits at a finite point and also limits at ±∞.

Example 6.5.2. Notice limx→0
sin(x)
x is type 0

0 . Observe that

lim
x→0

sin(x)

x
= lim
x→0

cos(x)

1
L’Hopital with

0

0

= 1.

We gave a geometric argument to prove this limit in the discussion leading up to the derivatives of sine and
cosine. Given that the derivatives of sine and cosine require knowledge of this limit it is not surprising that
this limit is trivially reproduced by l’Hopital’s rule with the help of the derivative of sine and cosine. I used
to think this proved this limit, but it is circular logic since we cannot know the derivative of sine is cosine
unless we have already derived this limit.
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Remark 6.5.3. notation for l’Hopital’s rule

At the present time I have not found a way to adequately translate my notation for applying
l’Hopital’s rule into LATEX. You should notice my notation in lecture is less cumbersome.

Example 6.5.4. In this example we’ll apply l’Hopital’s rule twice to remove the indeterminancy.

lim
x→∞

x2 + x− 2
2 + 3x

= lim
x→∞

2x+ 1

2x
L’Hopital on type

∞
∞

= lim
x→∞

2

2
L’Hopital on type

∞
∞

= 1.

Please notice that the rule says to differentiate the numerator and denominator separately. There is no such
rule as lim(f(x)) = lim(f ′(x)).

Example 6.5.5.

lim
x→∞

ln(x2)
3
√
x

= lim
x→∞

2
x

1
3x
−2
3

L’Hopital on type
∞
∞

= lim
x→∞

6x
2
3

x

= lim
x→∞

6
3
√
x

= 0.

Example 6.5.6.

lim
x→0+

xe
1
x = lim

x→0+

e
1
x

1
x

L’Hopital on type
∞
∞

= lim
x→0+

e
1
x

(−1
x2

)
−1
x2

= lim
x→0+

e
1
x

=∞.

Remark 6.5.7. notation for l’Hopital’s rule

In the preceding example it was not initially possible to apply l’Hopital’s rule. This is a common
trouble in these problems. Often we are faced with type 0 ·∞ in which case we can either reformulate
the quotient to be type 0/0 or type ∞/∞. Which choice is best is exposed via trial, error and
ultimately experience born from mathematical experimentation.
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Example 6.5.8.

lim
x→∞

e−xx2 = lim
x→∞

x2

ex

= lim
x→∞

2x

ex
L’Hopital on type

∞
∞

= lim
x→∞

2

ex
L’Hopital on type

∞
∞

= 0.

Apparently exponentials do grow faster than quadratic functions. It’s not hard to see that if we replaced x
with xn for n > 1 then we could again find the same result from n-applications of l’Hopital’s rule.

Example 6.5.9.

lim
x→∞

x2

ln(x)
= lim
x→∞

2x
1
x

L’Hopital on type
∞
∞

= lim
x→∞

(2x2)

=∞.

Apparently the natural logarithm grows slower than a quadratic function.

Example 6.5.10. I posed the question of how to prove that limx→∞(2x − x) = ∞. I simply claimed that
exponentials grow faster than polynomials but I offered no justification in the preceding section. l’Hopital’s
rule helps us argue that

lim
x→∞

(2x/x) = lim
x→∞

(ln(2)2x/1) =∞.

The limit above is useful to help analyze the following

lim
x→∞

(2x − x) = lim
x→∞

2x

x − 1
1
x

.

Clearly the denominator tends to zero and the numerator tends to ∞ since the 2x/x will dominate the −1
as x→∞. Therefore, limx→∞(2x − x) =∞.

The type∞/0 is divergent, the question is just if it goes to∞,−∞ or oscillates. In this example it was clear
the function was positive for x >> 0 once I rewrote the expression.

Example 6.5.11. Here’s what not to do.

lim
x→1

x

x− 1
= lim
x→1

1

1
= 1.

Notice here I was wrong to apply l’Hopital’s rule because this limit was not indeterminant of type 0/0 or
∞/∞. Rather, this limit has the form 1/0 which is divergent. Analysis from graph of f(x) = x

x−1 = 1 + 1
x−1

quickly shows that the limit point is at a VA and in fact the limit d.n.e.
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Example 6.5.12.

lim
θ→o+

(csc(θ)− cot(θ)) = lim
θ→o+

(
1

sin(θ)
− cos(θ)

sin(θ)

)
= lim
θ→o+

(
1− cos(θ)

sin(θ)

)
= lim
θ→o+

(
sin(θ)

cos(θ)

)
L’Hopital on type

0

0

= 0.

Example 6.5.13.

lim
x→1

(
1

ln(x)
− 1

x− 1

)
= lim
x→1

(
x− 1− ln(x)

(x− 1) ln(x)

)
= lim
x→1

(
1− 1

x
x−1
x + ln(x)

)
L’Hopital on type

0

0

= lim
x→1

(
1− 1

x

1− 1
x + ln(x)

)
L’Hopital on type

0

0

= lim
x→1

( 1
x2

1
x2 + 1

x

)
=

1

2
.

6.5.1 concerning why l’Hopital’s rule works

I’ll begin with an intuitive argument. Suppose limx→f(x)/g(x) is type (0/0). Since x→ a in the limit it is
reasonable to replace f and g with their linearizations based at x = a hence

lim
x→a

f(x)

g(x)
= lim
x→a

[
f(a) + f ′(a)(x− a)

g(a) + g′(a)(x− a)

]
= lim
x→a

[
f ′(a)(x− a)

g′(a)(x− a)

]
= lim
x→a

f ′(a)

g′(a)
=
f ′(a)

g′(a)
.

Note, I knew f(a) = g(a) = 0 since differentiability of f, g at x = a implies continuity at x = a and since
the limit is form 0/0 we know 0 = limx→a f(x) = f(a) and 0 = limx→a g(x) = g(a).

The proof for type ∞/∞ is technical and beyond the scope of this course. The proof of l’Hopital’s rule in
for type (0/0) follows from an interesting generalization of the MVT which is due to Cauchy.

Theorem 6.5.14. Cauchy’s law of the mean.

If f, g are continuous on [a, b] and are differentiable on (a, b) then there exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

Proof: the proof is similar to that for the MVT. Begin by defining

h(x) = (f(b)− f(a))(g(x)− g(a))− (g(b)− g(a))(f(x)− f(a)).
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Observe that h is continuous on [a, b] and differentiable on (a, b) by virtue of what is given. Furthermore,
h(a) = 0 and h(b) = 0 hence we may apply Rolle’s theorem to conclude there exists c ∈ (a, b) such that
h′(c) = 0 hence

(f(b)− f(a))g′(c)− (g(b)− g(a))f ′(c) ⇒ f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
�

There is a beautiful interpretation of this theorem in terms of parametric curves and their tangent vectors.
See Taylor’s Advanced Calculus page 109 (I happen to have the first edition, if you have another then look
for ”Cauchy’s generalized law of the mean”).
Proof of l’Hopital’s Rule for type 0

0 at finite limit point: Suppose we are given that limx→a f
′(x)/g′(x)

exists and f(a) = g(a) = 0 and g′(x) 6= 0 for all x ∈ Bδ(a) for some δ > 0. Suppose x ∈ Bδ(a) and x > a
then g′(x) 6= 0. Apply Cauchy’s law of the mean to intervals of the form [a, x], for each such interval we find
c such that a < c < x and

f ′(c)

g′(c)
=
f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)

since f(a) = g(a) = 0. Therefore,

lim
x→a+

f(x)

g(x)
= lim
c→a+

f ′(c)

g′(c)
= lim
x→a+

f ′(x)

g′(x)

and since the limit on the right exists it follows that the limit on the left exists and this proves half
of l’Hopital’s rule. If x ∈ Bδ(a) and x < a then by almost the same argument we can show that

limx→a−
f(x)
g(x) = limx→a−

f ′(x)
g′(x) . �

Proof of l’Hopital’s Rule for type 0
0 at infinite limit point: Apply the lemma to switch limits x→ ±∞

to corresponding limits of form t→ 0±:

lim
x→±∞

[
f(x)

g(x)

]
= lim
t→0±

[
f( 1

t )

g( 1
t )

]
apply l’Hopital’s rule

= lim
t→0±

[
f ′( 1

t )
−1
t2

g′( 1
t )
−1
t2

]
= lim
t→0±

[
f ′( 1

t )

g′( 1
t )

]
= lim
t→±∞

[
f ′(x)

g′(x)

]
�

6.5.2 indeterminant powers

We have discussed indeterminant forms of type 0/0, ∞/infty, 0 · ∞ and ∞−∞ in some depth. There are
three more forms to consider.

Definition 6.5.15. forms of indeterminant power.

1. we say lim fg is of ”type 00” iff lim f = 0 and lim g = 0

2. we say lim fg is of ”type ∞0” iff lim f =∞ and lim g = 0

3. we say lim fg is of ”type 1∞” iff lim f = 1 and lim g =∞
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We will discover shortly that these forms largely reduce to the problems we previously considered once we
understand a little lemma.

Lemma 6.5.16. the power lemma.

Suppose that f(x) > 0 for points considered in limit,

lim
[
f(x)

]g(x)
= exp

(
lim g(x) ln(f(x))

)
where equality includes all cases including those divergent cases. In particular,

1. if lim[g(x) ln(f(x))] = c ∈ R then lim
[
f(x)

]g(x)
= ec.

2. if lim[g(x) ln(f(x))] =∞ then lim
[
f(x)

]g(x)
=∞.

3. if lim[g(x) ln(f(x))] = −∞ then lim
[
f(x)

]g(x)
= 0.

Note lim is meant to denote both left, right and double-sided limits at a finite point and also limits
at ±∞.

Proof: follows from properties of natural logarithm as well as the continuity of the exponential function on
R:

lim
[
f(x)

]g(x)
= lim

[
exp
(
ln
[
f(x)

]g(x))]
= exp

(
lim ln

[
f(x)

]g(x))
= exp

(
lim g(x) ln(f(x))

)
.

I leave the proof of the divergent cases for the reader. �

Example 6.5.17. Calculate limx→0+ xx. We use the power lemma, consider

lim
x→0+

xx = exp( lim
x→0+

(x ln(x))︸ ︷︷ ︸
?

)

We focus on ?, notice it is of type 0 · ∞ so we use the standard technique to rewrite it as ∞/∞ and apply
l’Hopital’s rule

? = lim
x→0+

(x ln(x)) = lim
x→0+

ln(x)
1
x

= lim
x→0+

1
x
−1
x2

= lim
x→0+

(−x) = 0

Hence, we find ? = 0 and returning to our original limit,

lim
x→0+

xx = exp(0) = 1.

Example 6.5.18. Calculate limn→∞

(
1+ 1

n

)nx
. We use the power lemma, consider we can pull out x since

it is independent of n,

lim
n→∞

(
1 +

1

n

)nx
= exp

[
x lim
n→∞

n ln

(
1 +

1

n

)
︸ ︷︷ ︸

?

]

We focus on ?, notice it is of type 0 · ∞ so we use the standard technique to rewrite it as ∞/∞ and apply
l’Hopital’s rule

? = lim
n→∞

n ln

(
1 +

1

n

)
= lim
n→∞

ln(1 + 1
n )

1
n

= lim
n→∞

1
1+ 1

n

· −1
n2

−1
n2

= lim
n→∞

1

1 + 1
n

= 1.
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Hence, we find ? = 1 and returning to our original limit,

lim
x→0+

xx = exp(x?) = exp(x).

Example 6.5.19. Calculate limx→∞ x
1
x . We use the power lemma,

lim
x→∞

x
1
x = exp

[
lim
x→∞

1

x
ln(x)︸ ︷︷ ︸

?

]

We focus on ?, notice it is of type 0 · ∞ so we use the standard technique to rewrite it as ∞/∞ and apply
l’Hopital’s rule

? = lim
x→∞

1

x
ln(x) = lim

x→∞

ln(x)

x
= lim
x→∞

1
x

1
= 0.

Hence, we find ? = 0 and returning to our original limit,

lim
x→0+

x
1
x = exp(0) = 1.

Remark 6.5.20. notation for l’Hopital’s rule

Some students prefer the method presented in Stewart and other texts. The idea is to call the desired
limit y then take natural logarithm of limit and y and apply l’Hopital’s rule etc... to determine the
modified limit. Then you exponentiate both sides to find the answer. This technique is entirely
equivalent to the ?-method I propose in this section and as such you are free to use it if for some
reason you find my approach distasteful.

Problems

Problem 6.5.1. hope to add problems in the future..
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6.6 Taylor’s Theorem about polynomial approximation

The idea of a Taylor polynomial is that if we are given a set of initial data f(a), f ′(a), f ′′(a), . . . , f (n)(a) for
some function f(x) then we can approximate the function with an nth-order polynomial which fits all the
given data. Let’s see how it works order by order starting with the most silly case.

6.6.1 constant functions

Suppose we are given f(a) = yo then To(x) = yo is the zeroth Taylor polynomial for f centered at x = a.
Usually you have to be very close to the center of the approximation for this to match the function.

6.6.2 linearizations again

Suppose we are given values for f(a), f ′(a) we seek to find T1(x) = co + c1(x− a) which fits the given data.
Note that

T1(a) = co + c1(a− a) = f(a) co = f(a).

T ′1(a) = c1 = f ′(a) c1 = f ′(a).

Which gives us the first Taylor polynomial for f centered at a: T1(x) = f(a) + f ′(a)(x − a). This func-
tion, I hope, is familiar from our earlier study of linearizations. The linearization at a is the best linear
approximation to f near a.

6.6.3 quadratic approximation of function

Suppose we are given values for f(a), f ′(a) and f ′′(a) we seek to find T2(x) = co + c1(x − a) + c2(x − a)2

which fits the given data. Note that

T2(a) = co + c1(a− a) + c2(a− a)2 = f(a) co = f(a).

T ′2(a) = c1 + 2c2(a− a) = f ′(a) c1 = f ′(a).

T ′′2 (a) = 2c2 = f ′′(a) c2 =
1

2
f ′′(a).

Which gives us the first Taylor polynomial for f centered at a: T1(x) = f(a)+f ′(a)(x−a)+ 1
2f
′′(a)(x−a)2.

We would hope this is the best quadratic approximation for f near the point (a, f(a)).

6.6.4 cubic approximation of function

Suppose we are given values for f(a), f ′(a), f ′′(a) and f ′′′(a) we seek to find T2(x) = co + c1(x− a) + c2(x−
a)2 + c3(x− a)3 which fits the given data. Note that

T3(a) = co + c1(a− a) + c2(a− a)2 + c3(a− a)3 = f(a) co = f(a).

T ′3(a) = c1 + 2c2(a− a) + 3c3(a− a)2 = f ′(a) c1 = f ′(a).

T ′′3 (a) = 2c2 + 3 · 2c3(a− a) = f ′′(a) c2 =
1

2
f ′′(a).

T ′′′3 (a) = 3 · 2c3) = f ′′′(a) c3 =
1

3 · 2
f ′′′(a).

Which gives us the first Taylor polynomial for f centered at a: T1(x) = f(a) + f ′(a)(x − a) + 1
2f
′′(a)(x −

a)2 + 1
6f
′′′(a)(x− a)3. We would hope this is the best cubic approximation for f near the point (a, f(a)).
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6.6.5 general case

Hopefully by now a pattern is starting to emerge. We see that Tk(x) = Tk−1(x) + 1
k!f

(k)(a)(x − a)k where
k! = k(k − 1)(k − 2) · · · 3 · 2 · 1.

Definition 6.6.1. Taylor polynomials.

Suppose f is a function which has k-derivatives defined at a then the k-th Taylor polynomial for f
is defined to be Tk(x) where

Tk(x) =

k∑
j=0

f (j)(a)

j!
(x− a)j = f(a) + f ′(a)(x− a) +

1

2
f ′′(a)(x− a)2 + · · ·+ 1

k!
f (k)(a)(x− a)k

Let’s examine a few examples before continuing with the theory.

Example 6.6.2. Suppose f(x) = ex. Calculate the first few Taylor polynomials centered at a = −1.
Derivatives of the exponential are easy enough to calculate; f ′(x) = f ′′(x) = f ′′′(x) = ex therefore we find

To(x) =
1

e

T1(x) =
1

e
+

1

e
(x+ 1)

T2(x) =
1

e
+

1

e
(x+ 1) +

1

2e
(x+ 1)2

T3(x) =
1

e
+

1

e
(x+ 1) +

1

2e
(x+ 1)2 +

1

6e
(x+ 1)3.

The graph below shows y = ex as the dotted red graph, y = T1(x) is the blue line, y = T2(x) is the green
quadratic and y = T3(x) is the purple graph of a cubic. You can see that the cubic is the best approximation.

Example 6.6.3. Suppose f(x) = 1
x−2 + 1. Calculate the first few Taylor polynomials centered at a = 1.

Observe

f(x) =
1

x− 2
+ 1, f ′(x) =

−1

(x− 2)2
, f ′′(x) =

2

(x− 2)3
, f ′′′(x) =

−6

(x− 2)4
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thus f(1) = 0, f ′(1) = −1, f ′′(1) = −2 and f ′′′(1) = −6. Hence,

T1(x) = −(x− 1)

T2(x) = −(x− 1) + (x− 1)2

T3(x) = −(x− 1) + (x− 1)2 − (x− 1)3

The graph below shows y = 1
x−2 + 1 as the dotted red graph, y = T1(x) is the blue line, y = T2(x) is the green

quadratic and y = T3(x) is the purple graph of a cubic. You can see that the cubic is the best approximation.
Also, you can see that the Taylor polynomials will not give a good approximation to f(x) to the right of the
VA at x = 2.

Now, for a given function we can find a Taylor polynomial relative to any point in the domain. They certainly
are not unique. For example, we could expand about the center a = 3 to find

T1(x) = 2 + (3− x)

T2(x) = 2 + (3− x) + (3− x)2

T3(x) = 2 + (3− x) + (3− x)2 + (3− x)3.

The graph below uses the same color scheme. Notice this time the Taylor polynomials only work well to the
right of the VA.

Example 6.6.4. Let f(x) = sin(x). It follows that

f ′(x) = cos(x), f ′′(x) = − sin(x), f ′′′(x) = − cos(x), f (4)(x) = sin(x), f (5)(x) = cos(x)
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Hence, f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f (4)(0) = 0, f (5)(0) = 1. Therefore the Taylor polynomi-
als of orders 1, 3, 5 are

T1(x) = x blue graph

T3(x) = x− 1

6
x3 green graph

T5(x) = x− 1

6
x3 +

1

120
x5 purple graph

The graph below shows the Taylor polynomials calculated above and the next couple orders above. You can
see how each higher order covers more and more of the graph of the sine function.

Taylor polynomials can be generated for a given smooth9 function through a certain linear combination of its
derivatives. The idea is that we can approximate a function by a polynomial10, at least locally. We discussed
the tangent line approximation to a function. We found that the linearization of a function gives a good
approximation for points close to the point of tangency. If we calculate second derivatives we can similarly
find a quadratic approximation for the function. Third derivatives go to finding a cubic approximation about
some point. I should emphasize from the outset that a Taylor polynomial is just a polynomial, it will not
be able to exactly represent a function which is not a polynomial. In order to exactly represent an analytic
function we’ll need to take infinitely many terms, we’ll need a power series. We discuss those carefully in
calculus II. Finally, let me show you an example of how Taylor polynomials can be of fundamental importance
in physics.

Example 6.6.5. The relativistic energy E of a free particle of rest mass mo is a function of its velocity v:

E(v) =
moc

2√
1− v2/c2

for −c < v < c where c is the speed of light in the space. We calculate,

dE

dv
=

mov

(1− v2/c2)
3
2

9for p ∈ R the notation f ∈ C∞(p) means there exists a nbhd. of p ∈ R on which f has infinitely many continuous
derivatives.

10there do exist pathological examples for which all Taylor polynomials at a point vanish even though the function
is nonzero near the point; f(x) = exp(−1/x2) for x 6= 0 and f(0) = 0
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thus v = 0 is a critical number of the energy. Moreover, after a little calculation you can show the 4-th order
Taylor polynomial in velocity v for energy E is

E(v) ≈ moc
2 +

1

2
mov

2 +
3mo

8c2
v4

The constant term is the source of the famous equation E = moc
2 and the quadratic term is precisely the

classical kinetic energy. The last term is very small if v ≈ 0. As |v| → c the values of the last term become
more significant and they signal a departure from classical physics. I have graphed the relativistic kinetic
energy K = E −moc

2 (red) as well as the classical kinetic energy KNewtonian = mo
2 v2 (green) on a common

axis below:

The blue-dotted lines represent v = ±c and if |v| > c the relativistic kinetic energy is not even defined.
However, for v ≈ 0 you can see they are in very good agreement. We have to get past 10% of light speed
to even begin to see a difference. In every day physics most speeds are so small that we cannot see that
Newtonian physics fails to correctly model dynamics. I may have assigned a homework based on the error
analysis of the next section which puts a quantitative edge on the last couple sentences.

One of the great mysteries of modern science is this fascinating feature of decoupling. How is it that we are
so fortunate that the part of physics which touches one aspect of our existence is so successfully described.
Why isn’t it the case that we need to understand relativity before we can pose solutions to the problems
presented to Newtonian mechanics? Why is physics so nicely segmented that we can understand just one
piece at a time? This is part of the curiosity which leads physicists to state that the existence of physical
law itself is bizarre. If the universe is randomly generated as is life then how is it that we humble accidents
can so aptly describe what surrounds us. What right have we to understand what we do of nature? Recently
some materialists have turned to something called the anthropomorphic principle as a tool to describe how
this fortunate accident occurred. To the hardcore materialist the allowance of supernatural intervention
is abhorrent. They prefer a universe without purpose. Personally, I prefer purpose. Moreover, it is my
understanding of my place in this universe and our purpose to glorify God that make me expect to find laws
of physics. Laws, or more correctly, approximations of physics reveal the glory of a God we cannot fully
comprehend. I guess I digress... back to the math.

6.6.6 error in Taylor approximations

We’ve seen a few examples of how Taylor’s polynomials will locally mimic a function. Now we turn to the
question of extrema. Think about this, if a function is locally modeled by a Taylor polynomial centered
at a critical point then what does that say about the nature of a critical point? To be precise we need to



6.6. TAYLOR’S THEOREM ABOUT POLYNOMIAL APPROXIMATION 231

know some measure of how far off a given Taylor polynomial is from the function. This is what Taylor’s
theorem tells us. There are many different formulations of Taylor’s theorem11, the one below is partially due
to Lagrange.

Theorem 6.6.6. Taylor’s theorem with Lagrange’s form of the remainder.

If f has k derivatives on a closed interval I with ∂I = {a, b} then

f(b) = Tk(b) +Rk(b) =

k∑
j=0

f (j)(a)

j!
(b− a)j +Rk(b)

where Rk(b) = f(b)− Tk(b) is the k-th remainder. Moreover, there exists c ∈ int(I) such that

Rk(b) =
f (k+1)(c)

(k + 1)!
(b− a)k+1.

We have essentially proved the first portion of this theorem. It’s straightforward calculation to show that
Tk(x) has the same value, slope, concavity etc... as the function at the point x = a. What is deep about
this theorem is the existence of c. This is a generalization of the mean value theorem. Suppose that a < b,
if we apply the theorem to

f(x) = To(x) +R1(x)

we find Taylor’s theorem proclaims there exists c ∈ (a, b) such that R1(b) = f ′(c)(b−a) and since To(x) = f(a)
we have f(b)− f(a) = f ′(c)(b− a) which is the conclusion of the MVT applied to [a, b].

Proof of Taylor’s Theorem: the proof I give here I found in Real Variables with Basic Metric Space
Topology by Robert B. Ash. Proofs found in other texts are similar but I thought his was particularly lucid.

Since the k-th derivative is given to exist on I it follows that f (j) is continuous for each j = 1, 2, . . . , k−1 (we
are not garaunteed the continuity of the k-th derivative, however it is not needed in what follows anyway).
Assume a < b and define M implicitly by the equation below:

f(b) = f(a) + f ′(a)(b− a) + · · ·+ f (k−1)(a)

(k − 1)!
(b− a)(k−1) +

M(b− a)k

k!
.

Our goal is to produce c ∈ (a, b) such that f (k)(c) = M . Ash suggests replacing a with a variable t in the
equation that defined M . Define g by

g(t) = −f(b) + f(t) + f ′(t)(b− t) + · · ·+ f (k−1)(t)

(k − 1)!
(b− t)(k−1) +

M(b− t)k

k!

for t ∈ [a, b]. Note that g is differentiable on (a, b) and continuous on [a, b] since it is the sum and difference
of likewise differentiable and continuous functions. Moreover, observe

g(b) = −f(b) + f(b) + f ′(b)(b− b) + · · ·+ f (k−1)(t)

(k − 1)!
(b− b)(k−1) +

M(b− b)k

k!
= 0.

11Chapter 7 of Apostol or Chapter II.6 of Edwards would be good additional readings if you wish to understand
this material in added depth.
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On the other hand, the definition of M implies g(a) = 0. Therefore, Rolle’s theorem applies to g, this means
there exists c ∈ (a, b) such that g′(c) = 0. Calculate the derivative of g, the minus signs stem from the chain
rule applied to the b− t terms,

g′(t) =
d

dt

[
−f(b) + f(t)

]
+

d

dt

[
f ′(t)(b− t)

]
+ · · ·+

+
d

dt

[f (k−1)(t)

(k − 1)!
(b− t)(k−1)

]
+

d

dt

[M(b− t)k

k!

]
= f ′(t)− f ′(t) + f ′′(t)(b− t)− 1

2
f ′′(t)2(b− t) + · · ·+

+
f (k)(t)

(k − 1)!
(b− t)(k−1) − f (k−1)(t)

(k − 1)!
k(b− t)(k−2) − Mk(b− t)k−1

k!

=
f (k)(t)

(k − 1)!
(b− t)(k−1) − Mk(b− t)k−1

k!

=
(b− t)(k−1)

(k − 1)!

[
f (k)(t)−M

]
where we used that k

k! = k
k(k−1)! = 1

(k−1)! in the last step. Note that c ∈ (a, b) therefore c 6= b hence

(b − t) 6= 0 hence (b − t)(k−1) 6= 0 hence (b−t)(k−1)

(k−1)! 6= 0. It follows that g′(c) = 0 implies f (k)(c) −M = 0

which shows M = f (k)(c) for some c ∈ (a, b). The proof for the case b > a is similar. �

In total, we see that Taylor’s theorem is more or less a simple consequence of Rolle’s theorem. In fact, the
proof above is not much different than the proof we gave previously for the MVT.

Corollary 6.6.7. error bound for Tk(x).

If a function f has (k+ 1)-continuous derivatives on a closed interval [p, q] with length l = q− p and
|f (k+1)(x)| ≤M for all x ∈ (p, q) then for each a ∈ (p, q)

|Rak(x)| ≤ Mlk+1

(k + 1)!

where f(x) =
∑k
j=0

f(j)(a)
j! (x− a)j +Rak(x).

Proof: At each point a we can either look at [a, x] or [x, a] and apply Taylor’s theorem to obtain ca ∈ R such

that f(x) =
∑k
j=0

f(j)(a)
j! (x−a)j+Rak(x) where Rak(x) = f(k+1)(ca)

(k+1)! (x−a)k+1. Then we note |f (k+1)(ca)| ≤M
and the corollary follows. �

Consider the criteria for the Second Derivative test. We required that f ′(c) = 0 and f ′′(c) 6= 0 for a definite
conclusion. If f ′′ is continuous at c with f ′′(c) 6= 0 then it is nonzero on some closed interval I = [c− δ, c+ δ]
where δ > 0. If we also are given that f ′′′ is continuous on I then it follows there exists M > 0 such that
|f ′′′(x)| ≤M for all x ∈ I. Observe that

|f(x)− f(c)− 1

2
f ′′(c)(x− c)2| = |1

6
f ′′′(ζx)(x− c)3| ≤ 4Mδ3

3

for all x ∈ [c−δ, c+δ]. This inequality reveals that we have f(x) ≈ f(c)+ 1
2f
′′(c)(x−c)2 as δ → 0. Therefore,

locally the graph of the function resembles a parabola which either opens up or down at the critical point.
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If it opens up (f ′′(c) > 0) then f(c) is the local minimum value of f . If it opens down (f ′′(c) < 0) then f(c)
is the local maximum value of f . Of course this is no surprise. However, notice that we may now quantify

the error E2(x) = |f(x) − T2(x)| ≤ 8Mδ3

3 . If we can choose a bound for f ′′′(x) independent of x then the
error is simply bounded just in terms of the distance from the critical point which we can choose δ = |x− c|
and the resulting error is just 4Mδ3

3 . Usually, M will depend on the distance from c so the choice of δ to
limit error is a bit more subtle. Let me illustrate how this analysis works in an example.

Example 6.6.8. Suppose f(x) = 6x5 +15x4−10x3−30x2 +2. We can calculate that f ′(x) = 30x4 +60x3−
30x2−60x therefore clearly (0, 2) is a critical point of f . Moreover, f ′′(x) = 120x3 + 180x2−60x−60 shows
f ′′(0) = −60. I aim to show how the quadratic Taylor polynomial T2(x) = f(2)+f ′(2)x+ 1

2f
′′(2)x2 = 2−30x2

gives a good approximation for f(x) in the sense that the maximum error is essentially bounded by the size
of Lagrange’s term. Note that

f ′′′(x) = 360x2 + 360x− 60 and f (4)(x) = 720x+ 360

Suppose we seek to approximate on −0.1 < x < 0.1 then for such x we may verify that f (4)(x) > 0 which
means f ′′′ is increasing on [−0.1, 0.1] thus f ′′′(−0.1) < f ′′′(x) < f ′′′(0.1) which gives 3.6−36−60 < f ′′′(x) <
3.6 + 36 − 60 thus −92.4 < f ′′′(x) < −20.4. Therefore, if |x| < 0.1 then |f ′′′(x)| < 92.4. Using δ = 0.1 we

should expect a bound on the error of 4Mδ3

3 = 4(92.4)/3000 = 0.123. I have illustrated the global and local
qualities of the Taylor Polynomial centered at zero. Notice that the error bound was quite generous in this
example.
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Example 6.6.9. Here we examine Taylor polynomials for f(x) = sin(x) on the interval (−1, 1) and second
on (−2, 2). In each case we use sufficiently many terms to guarantee an error of less than ε = 0.1. Notice
that f (2k−1)(x) = ± sin(x) whereas f (2k−2)(x) = ± cos(x) for all k ∈ N therefore |f (n)(x)| ≤ 1 for all x ∈ R.

If we wish to bound the error to 0.1 on −1 < x < 1 then we to bound the remainder term as follows:
(note −1 < x < 1 implies l = 2 and we just argued M = 1 is a good bound for any k)

|f(x)− Tk(x)| ≤ Mlk+1

(k + 1)!
=

2k+1

(k + 1)!
= Ek ≤ 0.1

At this point I just start plugging various values of k until I find a value smaller than the desired bound. For
this case,

E1 =
22

2!
= 2, E2 =

23

3!
=

4

3
, E3 =

24

4!
=

2

3
, E4 =

25

5!
=

32

120
≈ 0.25, E5 =

26

6!
=

64

720
≈ 0.1

This shows that T4(x) will provide the desired accuracy. But, it just so happens that T3 = T4 in this case so
we find T3(x) = x− 1

6x
3 will suffice. In fact, it fits the ±0.1 tolerance band quite nicely:

If we wish to bound the error to 0.1 on −2 < x < 2 then we to bound the remainder term as follows: (note
−2 < x < 2 implies l = 4 )

|f(x)− Tk(x)| ≤ Mlk+1

(k + 1)!
=

4k+1

(k + 1)!
= Ek ≤ 0.1

At this point I just start plugging various values of k until I find a value smaller than the desired bound. For
this case,

E7 =
48

8!
≈ 1.6, E9 =

410

10!
≈ 0.3, E11 =

212

12!
≈ 0.035

This shows that T10(x) will provide the desired accuracy. But, it just so happens that T9 = T10 in this case
so we find T9(x) = x− 1

6x
3 + 1

120x
5 − 1

5040x
7 + 1

362880x
9 will suffice. In fact, as you can see below it fits the

±0.1 tolerance band quite nicely well beyond the target interval of −2 < x < 2:
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Example 6.6.10. Let’s think about f(x) = sin(x) again. This time, answer the following question: for
what domain −δ < x < δ will f(x) ≈ x to within ±0.01 ? We can use M = 1 and l = 2δ. Furthermore,
T1(x) = T2(x) = x therefore we want

|f(x)− x| ≤ (2δ)3

(3!
=

4δ3

3
≤ 0.1

to hold true for our choice of δ. Hence δ3 ≤ 0.075 which suggests δ ≤ 0.42. Taylor’s theorem thus shows
sin(x) ≈ x to within ±0.01 provided −0.42 < x < 0.42. (0.42 radians translates into about 24 degrees).
Here’s a picture of f(x) = sin(x) (in red) and T1(x) = x (in green) as well as the tolerance band (in grey).
You should recognize y = T1(x) as the tangent line.

Example 6.6.11. Suppose we are faced with the task of calculating
√

4.03 to an accuracy of 5-decimals.
For the purposes of this example assume all calculators are evil. It’s after the robot holocaust so they can’t
be trusted. What to do? We use the Taylor polynomial up to quadratic order: we have f(x) =

√
x and

f ′(x) = 1
2
√
x

and f ′′(x) = −1
4(
√
x)3

. Apply Taylor’s theorem,

√
4.03 = f(4) + f ′(4)(4.03− 4) +

1

2
f ′′(4)(4.03− 4)2 +R

= 2 +
1

4

3

100
− 1

64

9

10000
+R

= 2 + 0.0075− 0.000014062 +R

= 2.007485938 +R
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If we bound f ′′′(x) = 3
8(
√
x)5

by M on [4, 4.03] then |R| ≤ M(0.03)3

6 . Clearly f ′′′′(x) = −15
16(
√
x)7

< 0 for

x ∈ [4, 4.03] therefore, f ′′′ is decreasing on [4, 4.03]. It follows f ′′′(4) ≥ f ′′′(x) ≥ f ′′′(4.03). Choose M =
f ′′′(4) = 3

8(32) = 3
256 thus

|R| ≤ (0.03)3

6

3

256
=

27

256

1

10000
≈ 1

100000
= 0.000001.

Therefore,
√

4.03 = 2.007486± 0.000001 . As far as I know my TI-89 is still benevolent so we can check

our answer; the calculator says
√

4.03 = 2.00748598999.

In the last example, we again find that we actually are a whole digit closer to the answer than the error
bound suggests. This seems to be typical. In calculus II we’ll find a better error bound in the study of power
series.

Example 6.6.12. Newton postulated that the gravitational force between masses m and M separated by a
distance of r is

~F = −GmM
r2

r̂

where r is the distance from the center of mass of M to the center of mass m and G is a constant which
quantifies the strength of gravity. The minus sign means gravity is always attractive in the direction r̂ which
points along the line from M to m. Consider a particular case, M is the mass of the earth and m is a small
mass a distance r from the center of the earth. It is convenient to write r = R + h where R is the radius
of the earth and h is the altitude of m. Here we make the simplifying assumptions that m is a point mass
and M is a spherical mass with a homogeneous mass distribution. It turns out that means we can idealize
M as a point mass at the center of the earth. All of this said, you may recall that F = mg is the force of
gravity in highschool physics where the force points down. But, this is very different then the inverse square
law? How are these formulas connected? Focus on a particular ray eminating from the center of the earth
so the force depends only on the altitude h. In particular:

F (h) = − GmM

(R+ h)2

We calculate,

F ′(h) =
2GmM

(R+ h)3

Note that clearly F ′′(h) < 0 hence F ′ is a decreasing function of h therefore if 0 ≤ h ≤ hmax then F ′(0) ≥
F ′(h) ≥ F ′(hmax) so F ′(0) provides a bound on F ′(h). Calculate that

F (0) = −GmM
R2

and F ′(0) =
2GmM

R3

Taylor’s theorem says that F (h) = F (0) + E and |E| ≤ F ′(0)hmax therefore,

F (h) ≈ −GmM
R2

± 2GmM

R3
h

Note G = 6.673 × 10−11Nm2

kg2 and R = 6.3675 × 106m and M = 5.972 × 1024kg. You can calculate that
GmM
R2 = 9.83m/s2 which is hopefully familar to some who read this. In contrast, the error term

|E| = 2GmM

R3
h = (3.1× 10−6)mh
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If the altitude doesn’t exceed h = 1, 000m then the formula F/m = g approximates the true inverse square
law to within 0.0031m/s2. At h = 10, 000m the error is 0.031m/s2. At h = 100, 000m the error is around
0.31m/s2. (100,000 meters is about 60 miles, well above most planes flight ceiling). Taylor’s theorem gives
us the mathematical tools we need to quantify such nebulous phrases as F = mg ”near” the surface of the
earth. Mathematically, this is probably the most boring Taylor polynomial you’ll ever study, it was just the
constant term.

Remark 6.6.13. transcendental numbers and a look ahead to calculus II.

Another application of Taylor’s theorem is in calculation of transcendental numbers such as π or e.
See Apostol pg. 285 problem 10 for a method to approximate π to seven decimals. Or page 281 for the
calculation of e to 8 decimal places. On page 282 in Example 2 a proof is offered for the irrationality
of e. To be frank, you don’t really understand what a real number is until you understand the
construction and convergence/divergence of power series. The idea of an unending decimal expansion
really has no justification in the mathematics we have thus far discussed. Fortunately most of you
will take calculus II so at least then you’ll actually learn how to carefully formulate what is required
for an unending sum to be reasonable. The idea of a series provides a careful meaning for a sum of
infinitely many things. We’ll explain why 0.1111... = 1

10 + 1
100 + 1

1000 + · · · is a real number whereas
1
3 + 1

4 + 1
5 + · · · is not. Taylor’s theorem plays an important role in the study of power series. But,

as you hopefully see by now it is also useful for gaining deeper insight into the geometry and local
behavior of functions.

6.6.7 higher derivative tests

We saw in the previous section that the second derivative test is concretely justified by Taylor’s theorem with
Lagrange’s remainder. The next logical step is the following theorem which is justified by similar analysis.
Basically the point is that if you have all the derivatives zero up to some particular order, say k − 1, then
the function f(x) ≈ Tk(x) provided x is close to the critical point. Therefore, if k is an even integer then
the function is locally-shaped like a parabola whereas if k is odd then is locally-shaped like a cubic. Hence
the following theorem:

Theorem 6.6.14. higher derivative tests.

Suppose f has k continuous derivatives such that f ′(c) = f ′′(c) = · · · = f (k−1)(c) = 0 and f (k)(c) 6= 0
then

1. if k ∈ 2N and f (k)(c) > 0 then f(c) is a local minimum.

2. if k ∈ 2N and f (k)(c) < 0 then f(c) is a local maximum.

3. if k ∈ 2N+ 1 then f(c) is not an extrema.

The notation k ∈ 2Nmeans that there exists n ∈ N such that k = 2n. Likewise, the notation k ∈ 2N+1 means
that there exists n ∈ N such that k = 2n+1. In other words, 2N = {2, 4, 6, . . . } whereas 2N+1 = {3, 5, 7, . . . }.
The proof of this theorem is suggested by the examples and general comments about Taylor polynomials
and their remainders. However, if you would like to see an explicit proof you can consult C.H. Edwards, Jr.
Advanced Calculus of Several Variables pages 125-127.

Example 6.6.15. Consider f(x) = x4. We can calculate f ′(x) = 4x3 therefore the only critical number is
c = 0. Note that f ′′(x) = 12x2, f ′′′(x) = 24x, f (4)(x) = 24. It follows that

f ′(0) = f ′′(0) = f ′′′(0) = 0
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but f (4)(x) = 24 > 0 therefore, by the higher derivative test, f(0) = 0 is a local minimum of f(x) = x4.
Notice that this example would not have been covered by the second derivative test (but, the first derivative
test would have covered it).

Example 6.6.16. Consider f(x) = x5. We can calculate f ′(x) = 5x4 therefore the only critical number is
c = 0. Note that f ′′(x) = 20x3, f ′′′(x) = 60x2, f (4)(x) = 120x, f (5)(x) = 120. It follows that

f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = 0

but f (5)(x) = 120 6= 0 therefore, by the higher derivative test, f(0) = 0 is not a local extrema of f(x) = x5.
Notice that this example would not have been covered by the second derivative test (but, the first derivative
test would have covered it).

Example 6.6.17. Consider f(x) = x3 − x4 + 1. We can calculate f ′(x) = 3x2 − 4x3 = x2(3 − 4x) thus
critical numbers are c = 0 and c = 3/4. Note that f ′′(x) = 6x− 12x2, f ′′′(x) = 6− 24x, f (4)(x) = −24. It
follows that

f ′(0) = f ′′(0) = 0

but f (3)(x) = 6 6= 0 therefore, by the higher derivative test, f(0) = 3 is a not a local extrema of f(x) =
x3 − x4 + 3. Continuing to the other critical point notice f ′(3/4) = 0, f ′′(3/4) = 18/4 − 12(3/4)2 = −9/4
thus by the second derivative test f(3/4) is a local maximum.

What is the difference between these critical points geometrically? Notice that y = f ′′(x) = 6x− 12x2 =
6x(1− 2x) is a downward opening parabola with zeros at x = 0 and x = 1/2 therefore we deduce f ′′(x) < 0
for x < 0 and f ′′(x) > 0 for 0 < x < 1/2. This means that (0, 1) is an inflection point of y = f(x). For that
reason this example could not be covered by the second derivative test. In contrast, the concavity is downward
on a nbhd around c = 3/4.

Problems

Problem 6.6.1. hope to add problems in the future..
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End of Chapter Problems

Problem 6.6.2. hope to add problems in the future..
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Chapter 7

antiderivatives and the area problem

Let me begin by defining the terms in the title:

1. an antiderivative of f is another function F such that F ′ = f .

2. the area problem is: ”find the area of a shape in the plane”

This chapter is concerned with understanding the area problem and then solving it through the fundamental
theorem of calculus(FTC).

We begin by discussing antiderivatives. At first glance it is not at all obvious this has to do with the area
problem. However, antiderivatives do solve a number of interesting physical problems so we ought to consider
them if only for that reason. The beginning of the chapter is devoted to understanding the type of question
which an antiderivative solves as well as how to perform a number of basic indefinite integrals. Once all of
this is accomplished we then turn to the area problem.

To understand the area problem carefully we’ll need to think some about the concepts of finite sums, se-
quences and limits of sequences. These concepts are quite natural and we will see that the theory for these is
easily transferred from some of our earlier work. Once the limit of a sequence and a number of its basic prop-
erties are established we then define area and the definite integral. Finally, the remainder of the chapter is
devoted to understanding the fundamental theorem of calculus and how it is applied to solve definite integrals.

I have attempted to be rigorous in this chapter, however, you should understand that there are superior
treatments of integration(Riemann-Stieltjes, Lesbeque etc..) which cover a greater variety of functions in a
more logically complete fashion. The treatment here is more or less typical of elementary calculus texts.

245
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7.1 indefinite integration

Don’t worry, the title of this section will make sense later.

7.1.1 why antidifferentiate?

The antiderivative is the opposite of the derivative in the following sense:

Definition 7.1.1. antiderivative.

If f and F are functions such that F ′ = f then we say that F is an antiderivative of f .

Example 7.1.2. Suppose f(x) = x then an antiderivative of f is a function F such that dF
dx = x. We could

try x2 but then d
dx (x2) = 2x has an unwanted factor of 2. What to do? Just adjust our guess a little: try

F (x) = 1
2x

2. Note that d
dx ( 1

2x
2) = 1

2
d
dx (x2) = 1

2 (2x) = x.

Example 7.1.3. Let k be a constant. Suppose g(t) = ekt then we guess G(t) = 1
ke
kt and note it works;

d
dt (

1
ke
kt) = ekt therefore g(t) = ekt has antiderivative G(t) = 1

ke
kt.

Example 7.1.4. Suppose h(θ) = cos(θ). Guess H(θ) = sin(θ) and note it works; d
dθ (sin(θ)) = cos(θ).

Obviously these guesses are not random. In fact, these are educated guesses. We simply have to think
about how we differentiated before and just try to think backwards. Simple enough for now. However, we
should stop to notice that the antiderivative is far from unique. You can easily check that F (x) = 1

2x
2 + c1,

G(t) = 1
ke
kt + c2 and H(θ) = sin(θ) + c3 are also antiderivatives for any constants c1, c2, c3 ∈ R.

Proposition 7.1.5. antiderivatives differ by at most a constant.

If f has antiderivatives F1 and F2 then there exists c ∈ R such that F1(x) = F2(x) + c.

Proof: We are given that dF1

dx = f(x) and dF2

dx = f(x) therefore dF1

dx = dF2

dx . Hence, by Proposition 6.1.10
we find F1(x) = F2(x) + c. �

To understand the significance of this constant we should consider a physical question.

Example 7.1.6. Suppose that the velocity of a particle at position x is measured to be constant. In particular,
suppose that v(t) = dx

dt and v(t) = 1. The condition v(t) = dx
dt means that x should be an antiderivative of

v. For v(t) = 1 the form of all antiderivatives is easy enough to guess: x(t) = t+ c. The value for c cannot
be determined unless we are given additional information about this particle. For example, if we also knew
that at time zero the particle was at x = 3 then we could fit this initial data to pick a value for c:

x(0) = 0 + c = 3 ⇒ c = 3 ⇒ x(t) = t+ 3 .

For a given velocity function each antiderivative gives a possible position function. To determine the precise
position function we need to know both the velocity and some initial position. Often we are presented with
a problem for which we do not know the initial condition so we’d like to have a mathematical device to leave
open all possible initial conditions.
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Definition 7.1.7. indefinite integral.

If f has an antiderivative F then the indefinite integral of f is given by:∫
f(x)dx = {G(x) | G′(x) = f(x)} = {F (x) + c|c ∈ R}.

However, we will customarily drop the set-notation and simply write∫
f(x)dx = F (x) + c where F ′(x) = f(x).

The indefinite integral includes all possible antiderivatives for the given function. Technically the indefinite
integral is not a function. Instead, it is a family of functions each of which is an antiderivative of f .

Example 7.1.8. Consider the constant acceleration problem1; we are given that a = −g where g = 9.8m/s2

and a = dv
dt . We can take the indefinite integral of the equation:

dv

dt
= −g ⇒ v(t) =

∫
−g dt = −gt+ c1.

Furthermore, if v = dy
dt then

dy

dt
= −gt+ c1 ⇒ y(t) =

∫
−gt+ c1 dt = −1

2
gt2 + c1t+ c2.

Therefore, we find the velocity and position are given by formulas

v(t) = c1 − gt y(t) = c2 + c1t−
1

2
gt2.

If we know the initial velocity is vo and the initial position is yo then

v(0) = vo = c1 − 0 ⇒ v(t) = vo − gt

y(0) = yo = c2 − 0− 0 ⇒ y(t) = yo + vot−
1

2
gt2

These formulas were derived by Galileo without the benefit of calculus. Instead, he used experiment and a
healthy skepticism of the philosophical nonsense of Aristotle. The ancient Greek’s theory of motion said that
if something was twice as heavy then it falls twice as fast. This is only true when the objects compared have
air friction clouding the dynamics. The equations above say the objects’ motion is independent of the mass.

1here F = ma is −mg = ma so a = −g but that’s physics, I supply the equation of motion in calculus. You just
have to do the math.
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Remark 7.1.9. redundant comment (again).

The indefinite integral is a family of antiderivatives:
∫
f(x) = F (x) + c where F ′(x) = f(x). The

following equation shows how indefinite integration is undone by differentiation:

d

dx

∫
f(x) dx = f(x)

the function f is called the integrand and the variable of indefinite integration is x. Notice the
constant is obliterated by the derivative in the equation above. Leibniz’ notation intentionally makes
you think of cancelling the dx’s as if they were tiny quantities. Newton called them fluxions. In fact
calculus was sometimes called the theory of fluxions in the early 19-th century. Newton had in mind
that dx was the change in x over a tiny time, it was a fluctuation with respect to a time implicit. We
no longer think of calculus in this way because there are easier ways to think about foundations of
calculus. That said, it is still an intuitive notation and if you are careful not to overextend intuition
it is a powerful mnemonic. For example, the chain rule df

dx = df
du

du
dx . Is the chain rule just from

multiplying by one? No. But, it is a nice way to remember the rule.

A differential equation is an equation which involves derivatives. We have solved a number of differential
equations in this section via the process of indefinite integration. The example that follows doesn’t quite fit
the same pattern. However, I will again solve it by educated guessing2 .

Example 7.1.10. A simple model of population growth is that the rate of population growth should be directly
proportional to the size of the population P . This means there exists k ∈ R such that

dP

dt
= kP.

Fortunately, we just did Example 7.1.3 where we observed that∫
ekt dt =

1

k
ekt + c

So we know that one solution is given by P (t) = 1
ke
kt. Change variables by substituting u = ln(P ) so

du
dt = 1

P
dP
dt thus dP

dt = P du
dt . Hence we can solve P du

dt = kP or du
dt = k instead. This we can antidifferentiate

to find u(t) = kt+ c1. Thus, ln(P ) = kt+ c1 hence P (t) = ekt+c1 = ec1ekt. If the initial population is given

to be Po then we find P (0) = Po = ec1 thus P (t) = Poe
kt.

The same mathematics govern simple radioactive decay, continuously compounded interest, current or voltage
in an LR or RC circuit and a host of other simplistic models in the natural sciences. Real human population
growth involves many factors beyond just raw population, however for isolated systems this type of model
does well. For example, growth of bacteria in a petri dish.

Remark 7.1.11. why antidifferentiate?

We antidifferentiate to solve simple differential equations. When one variable (say v) is the instan-
taneous rate of change of another (say s so v = ds

dt ) then we can reverse the process of differentiation
to discover the formula of s if we are given the formula for v. However, because constants are lost in
differentiation we also need an initial condition if we wish to uniquely determine the formula for s.
I have emphasized the utility of the concept of antidifferentiation as it applies to physics, but that
was just my choice.

2Actually, the method I use here is rather unusual but the advanced reader will recognize the idea from differential
equations. The easier way of solving this is called separation of a variables, but we discuss that method much later
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Notice, I have yet to even discuss the area problem. We already see that indefinite integration is an important
skill to master. The methods I have employed in this section are ad-hoc. We would like a more systematic
method. I offer organization for guessing in the next section.

7.1.2 properties of indefinite integration

In this section we list all the basic building blocks for indefinite integration. Some of these we already guessed
in specific examples. If you need to see examples you can skip ahead to the section that follows this one.

Proposition 7.1.12. basic properties of indefinite integration.

Suppose f, g are functions with antiderivatives and c ∈ R then∫
[f(x) + g(x)]dx =

∫
f(x) dx+

∫
g(x) dx

∫
cf(x) dx = c

∫
f(x) dx

Proof: Suppose
∫
f(x) dx = F (x) + c1 and

∫
g(x) dx = G(x) + c2 note that

d

dx
[F (x) +G(x)] =

d

dx
[F (x)] +

d

dx
[G(x)] = f(x) + g(x)

hence
∫

[f(x) + g(x)]dx = F (x) +G(x) + c3 =
∫
f(x) dx+

∫
g(x) dx where the constant c3 is understood to

be included in either the
∫
f(x) dx or the

∫
g(x) dx integral as a matter of custom. �

Proposition 7.1.13. power rule for integration. suppose n ∈ R and n 6= −1 then∫
xn dx =

1

n+ 1
xn+1 + c.

Proof: d
dx [ 1

n+1x
n+1] = n+1

n+1x
n+1−1 = xn. Note that n+ 1 6= 0 since n 6= −1. �

Note that the special case of n = −1 stands alone. You should recall that d
dx ln(x) = 1

x provided x > 0. In

the case x < 0 then by the chain rule applied to the positive case: d
dx ln(−x) = 1

−x (−1) = 1
x . Observe then

that for all x 6= 0 we have d
dx ln |x| = 1

x . Therefore the proposition below follows:

Proposition 7.1.14. reciprocal function is special case.∫
1

x
dx = ln |x|+ c.

Note that it is common to move the differential into the numerator of such expressions. We could just as
well have written that

∫
dx
x = ln |x|+ c. I leave the proof of the propositions in the remainder of this section

to the reader. They are not difficult.
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Proposition 7.1.15. exponential functions. suppose a > 0 and a 6= 1,∫
ax dx =

1

ln(a)
ax + c in particular:

∫
ex dx = ex + c

The exponential function has base a = e and ln(e) = 1 so the formulas are consistent.

Proposition 7.1.16. trigonometric functions.

∫
sin(x) dx = − cos(x) + c

∫
cos(x) dx = sin(x) + c∫

sec2(x) dx = tan(x) + c

∫
sec(x) tan(x) dx = sec(x) + c∫

csc2(x) dx = − cot(x) + c

∫
csc(x) cot(x) dx = − csc(x) + c.

You might notice that many trigonometric functions are missing. For example, how would you calculate3∫
tan(x) dx? We do not have the tools for that integration at this time. For now we are simply cataloguing

the basic antiderivatives that stem from reading basic derivative rules backwards.

Proposition 7.1.17. hyperbolic functions.

∫
sinh(x) dx = cosh(x) + c

∫
cosh(x) dx = sinh(x) + c

Naturally there are also basic antiderivatives for sech2(x), sech(x)tanh(x), csch2(x) and csch(x)coth(x) how-
ever I omit them for brevity and also as to not antagonize the struggling student at this juncture.

Proposition 7.1.18. special algebraic and rational functions∫
dx

1 + x2
= tan−1(x) + c

∫
dx√

1− x2
= sin−1(x) + c.∫

dx√
x2 − 1

= cosh−1(x) + c

∫
dx√

1 + x2
= sinh−1(x) + c.∫

dx

1− x2
= tanh−1(x) + c.

One can replace the expressions above with natural logs of certain algebraic functions. These identities are
explored on page 466 of Stewart’s 6-th edition. Page 488 has a nice summary of these basic integrals that
we ought to memorize (although we have not covered tan(x) and cot(x) at this point)

3the answer is ln | sec(x)|+ c if you’re curious and impatient.
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7.1.3 examples of indefinite integration

Example 7.1.19. ∫
dx =

∫
x0dx = x+ c

Example 7.1.20. ∫ [√
x+

1
3
√
x

]
dx =

∫
x

1
2 dx+

∫
x
−1
3 dx =

2

3
x

3
2 +

3

2
x

2
3 + c

Example 7.1.21. ∫ √
13x7dx =

√
13

∫
x

7
2 dx =

√
13
9
2

x
9
2 + c =

2
√

13

9
x4
√
x+ c

Example 7.1.22. ∫
dx

3x2
=

1

3

∫
x−2dx =

−1

3
x−1 =

−1

3x
+ c

Example 7.1.23. ∫
2xdx

x2
= 2

∫
dx

x
= 2 ln |x|+ c = ln(x2) + c

Note that |x| = ±x thus |x|2 = (±x)2 = x2 so it was logical to drop the absolute value bars after bringing in
the factor of two by the property ln(Ac) = c ln(A).

Example 7.1.24. ∫
3ex+2dx = 3

∫
e2exdx = 3e2

∫
exdx = 3e2(ex + c1) = 3ex+2 + c

Example 7.1.25. ∫
(x+ 2)2dx =

∫
(x2 + 4x+ 4)dx

=

∫
x2dx+ 4

∫
xdx+ 4

∫
dx

=
1

3
x3 + 2x2 + 4x+ c

Example 7.1.26. ∫
(2x3 + 3)dx =

2

4
x4 + 3x+ c =

1

2
x4 + 3x+ c

Example 7.1.27.∫
(2x + 3 cosh(x))dx =

∫
2xdx+ 3

∫
cosh(x)dx =

1

ln(2)
2x + 3 sinh(x) + c

Example 7.1.28.∫
2x3 + 3

x
dx =

∫ [
2x3

x
+

3

x

]
dx =

∫
2x2 dx+ 3

∫
dx

x
=

2

3
x3 + 3 ln |x|+ c
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Example 7.1.29.∫
x2

1 + x2
dx =

∫
1 + x2 − 1

1 + x2
dx =

∫ [
1− 1

1 + x2

]
dx = x− tan−1(x) + c

Example 7.1.30. ∫
sin(x+ 3)dx =

∫ [
sin(x) cos(3) + sin(3) cos(x)

]
dx

= cos(3)

∫
sin(x)dx+ sin(3)

∫
cos(x)dx

= − cos(3)[cos(x) + c1] + sin(3)[sin(x) + c2]

= sin(3) sin(x)− cos(3) cos(x) + c

= − cos(x+ 3) + c

Incidentally, we find a better way to do this later with the technique of u-substitution.

Example 7.1.31. ∫
1

cos2(x)
dx =

∫
sec2(x)dx = tan(x) + c

Example 7.1.32. ∫
dx

x2 + cos2(x) + sin2(x)
=

∫
dx

x2 + 1
= tan−1(x) + c

Every example in this section is easily checked by differentiation.

Problems

Problem 7.1.1. hope to add problems in the future..
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7.2 area problem

The area of a general shape in the plane can be approximately calculated by dividing the shape into a bunch
of rectangles or triangles. Since we know how to calculate the area of a rectangle [A = lw] or a triangle
[A = 1

2bh] we simply add together all the areas to get an approximation of the total area. In the special case
that the shape has flat sides then we can find the exact area since any shape with flat sides can be subdivided
into a finite number of triangles. Generally shapes have curved edges so no finite number of approximating
rectangles or triangles will capture the exact area. Archimedes realized this some two milennia ago in ancient
Syracuse. He argued that if you could find two approximations of the area one larger than the true area
and one smaller than the true area then you can be sure that the exact area is somewhere between those
approximations. By such squeeze-theorem type argumentation he was able to demonstrate that the value of
π must be between 223

71 and 22
7 (in decimals 3.1408 < π u 3.1416 < 3.1429 ). In Apostol’s calculus text he

discusses axioms for area and he uses Archimedes’ squeezing idea to define both area and definite integrals.
Our approach will be less formal and less rigorous.

Our goal in this section is to careful construct a method to calculate the area bounded by a function on
some interval [a, b]. Since the function could take on negative values in the interval we actually are working
on a method to calculate signed area under a graph. Area found beneath the x-axis is counted negative
whereas area above the x-axis is counted positive. Shapes more general than those described by the graph
of a simple function are treated in the next chapter.

7.2.1 sums and sequences in a nutshell

A sequence is function which corresponds uniquely to an ordered list of values. We consider real-valued
sequences but the concept extends to many other objects4.

Definition 7.2.1. sequence of real numbers.

If U ⊆ Z has a smallest member and the property that n ∈ U implies n + 1 ∈ U then a function
f : U → R is a sequence. Moreover, we may denote the sequence by listing its values

f = {f(u1), f(u2), f(u3), . . . } = {fu1 , fu2 , fu3 , . . . } = {fuj}∞j=1

Typically U = N or U = N ∪ {0} and we study sequences of the form

{aj}∞j=0 = {a0, a1, a2, . . . } {bn}∞n=1 = {b1, b2, b3 . . . }

Example 7.2.2. Sequences may defined by a formula: an = n for all n ∈ N gives

{an}∞n=1 = {1, 2, 3, . . . }.

Or by an iterative rule: f1 = 1, f2 = 1 then fn = fn−1 + fn−2 for all n ≥ 3 defines the Fibonacci sequence:

{fn}∞n=1 = {1, 1, 2, 3, 5, 8, 13, 21, . . . }.

Beyond this we can add, subtract and sometimes divide sequences because a sequence is just a function with
a discrete domain.

4sequences of functions, matrices or even spaces are studied in modern mathematics
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Definition 7.2.3. finite sum notation.

Suppose aj ∈ R for j ∈ N. Then define:

1∑
j=1

aj = a1

n∑
j=1

aj =

n−1∑
j=1

aj + an

for n ≥ 2. This iterative definition gives us the result that

n∑
j=1

aj = a1 + a2 + · · ·+ an.

The variable j is called the dummy index of summation. Moreover, sums such as

jN∑
j=j1

aj = aj1 + aj2 + · · ·+ ajN︸ ︷︷ ︸
N summands

can be carefully defined by a similar iterative formula.

Example 7.2.4. Sums can give particularly interesting sequences. Consider an =
∑n
j=1 j for n = 1, 2 . . . .

{an}∞n=1 = {1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4, . . . } = {1, 3, 6, 10, . . . }.

The greatest mathematician of the 19-th century is generally thought to be Gauss. As a child Gauss was tasked
with computing a100. The story goes that just as soon as the teacher asked for the children to calculate the
sum Gauss wrote the answer 5050 on his slate. How did he know how to calculate the sum 1+2+3+ · · ·+50
with such ease? Gauss understood that generally

n∑
j=1

j =
n(n+ 1)

2

For example,

a1 =
1(1 + 1)

2
= 1, a2 =

2(2 + 1)

2
= 3, a3 =

3(3 + 1)

2
= 6,

a4 =
4(4 + 1)

2
= 10, . . . , a100 =

(100)(101)

2
= 50(101) = 5050.

What method of proof is needed to prove results such as this? The method is called ”proof by mathematical
induction”. We discuss it in some depth in the Math 200 course. In short, the idea is this: you prove the
result you interested in is true for n = 1 then you prove that if n is true then n + 1 is also true for an
arbitrary n ∈ N. Let’s see how this plays out for the preceding example:

Proof of Gauss’ Formula by induction: note that n = 1 is clearly true since a1 = 1. Assume that∑n
j=1 j = n(n+1)

2 (?) is valid and consider that, by the recursive definition of the finite sum,

n+1∑
j=1

j =

n∑
j=1

j + n+ 1 =
n(n+ 1)

2︸ ︷︷ ︸
using ?

+n+ 1 =
1

2
(n2 + 3n+ 2) =

([n+ 1])([n+ 1] + 1)

2
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which is precisely the claim for n+1. Therefore, by proof by mathematical induction, Gauss’ formula is true
for all n ∈ N. �

Formulas for simple sums such as
∑

1,
∑
n,
∑
n2,
∑
n3 are also known and can be proven via induction.

Let’s collect these results for future reference:

Proposition 7.2.5. special formulas for finite sums.

n∑
k=1

1 = n,

n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
,

n∑
k=1

k3 =
n2(n+ 1)2

4
.

The following results are less surprising but are even more useful:

Proposition 7.2.6. finite sum properties. suppose ak, bk, c ∈ R for all k and let n,m ∈ N such that m < n,

(i.)

n∑
k=1

ak +

n∑
k=1

bk =

n∑
k=1

(ak + bk),

(ii.)

n∑
k=1

cak = c

n∑
k=1

ak,

(iii.)

n∑
k=1

ak =

m∑
k=1

ak +

n∑
k=m+1

ak.

Proof: begin with (i.). The proof is by induction on n. Note that (i.) is true for n = 1 since
∑1
k=1 ak +∑1

k=1 bk = a1 + b1 =
∑1
k=1(ak + bk). Suppose that (i.) is true for n and consider

n+1∑
k=1

ak +

n+1∑
k=1

bk =

n∑
k=1

ak + an+1 +

n∑
k=1

bk + bn+1 by defn. of
∑

=

n∑
k=1

(ak + bk) + an+1 + bn+1 by induction hypothesis for n

=

n+1∑
k=1

(ak + bk) by defn. of
∑

Therefore, (i.) true for n implies (i.) is true for n+ 1 hence by proof by mathematical induction we conclude
(i.) is true for all n ∈ N. The proof for (ii.) is similar. We leave the proof of (iii.) to the reader. �

We would like to have sums with many terms in the sections that follow. In fact, we will want to let n→∞.
The definition that follows is essentially the same we gave previously for functions of a continuous variable.
The main difference is that only integers are considered in the limiting process.
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Definition 7.2.7. limit of a sequence.

We say the sequence {an} converges to L ∈ R and denote

lim
n→∞

an = L

iff for each ε > 0 there exists N ∈ N such that for all n > N we find |an − L| < ε

The skills you developed in studying functions of a continuous variable transfer to the study of sequential
limits because of the following fundamental lemma:

Lemma 7.2.8. correspondence of limits of functions on R and sequences.

Suppose {an} is a sequence and f is a function such that f(n) = an for all n ∈ dom({an}). If
limx→∞ f(x) = L ∈ R then limn→∞ an = L.

Proof: assume limx→∞ f(x) = L ∈ R and f(n) = an for all n ∈ N. Let ε > 0 and note that by the given
limit there exists M ∈ R such that |f(x) − L| < ε for all x > M . Choose N to be the next integer beyond
M so N ∈ N and N > M . Suppose that n ∈ N and n > N then |f(n) − L| = |an − L| < ε. Therefore,
limn→∞ an = L. �

The converse is not true. You could extend a sequence so that it gave a function of a continuous variable
which diverged. Just imagine a function which oscillates wildly between the natural numbers.

Definition 7.2.9. infinite sum.

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak.

Given a particular formula for ak it is generally not an easy matter to determine if the limit above exists.
These sums without end are called series. In particular, we define

∑∞
k=1 ak = a1 +a2 +a3 + · · · to converge

iff the limit limn→∞
∑n
k=1 ak converges to a real number. We discuss a number of various criteria to analyze

this question in calculus II. I believe this amount of detail is sufficient for our purposes in solving the area
problem. Our focus will soon shift away from explicit calculation of these sums.

7.2.2 left, right and midpoint rules

We aim to calculate the signed-area bounded by y = f(x) for a ≤ x ≤ b. In this section we discuss three
methods to approximate the signed-area. To begin we should settle some standard notation which we will
continue to use for several upcoming sections.

Definition 7.2.10. partition of [a, b].

Suppose a < b then [a, b] ⊂ R. Define ∆x = b−a
n for n ∈ N and let xj = a+ j∆x for j = 0, 1, . . . , n.

In particular, xo = a and xn = b.

The closed interval [a, b] is a union of n-subintervals of length ∆x. Note that the closed interval [a, b] =
[xo, x1]∪[x1, x2]∪· · ·∪[xn−1, xn]. The following rule is an intuitively obvious way to calculate the signed-area.
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Definition 7.2.11. left endpoint rule (Ln).

Suppose that [a, b] ⊆ dom(f) then we define

Ln =

n−1∑
j=0

f(xj)∆x = [f(x0) + f(x1) + · · ·+ f(xn−1)]∆x.

Example 7.2.12. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the left-endpoint
rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x = 3−1

4 = 0.5 thus
xo = 1, x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

L4 = [f(1) + f(1.5) + f(2) + f(2.5)]∆x = [1 + 2.25 + 4 + 6.25](0.5) = 6.75

It’s clear from the picture below that L4 underestimates the true area under the curve.

Definition 7.2.13. right endpoint rule (Rn).

Suppose that [a, b] ⊆ dom(f) then we define

Rn =

n∑
j=1

f(xj)∆x = [f(x1) + f(x2) + · · ·+ f(xn)]∆x.

Example 7.2.14. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the right end-point
rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x = 3−1

4 = 0.5 thus
xo = 1, x1 = 1.5, x2 = 2, x3 = 2.5 and x4 = 3.

R4 = [f(1.5) + f(2) + f(2.5) + f(3)]∆x = [2.25 + 4 + 6.25 + 9](0.5) = 10.75

It’s clear from the picture below that R4 overestimates the true area under the curve.
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Definition 7.2.15. midpoint rule (Mn).

Suppose that [a, b] ⊆ dom(f) and denote the midpoints by x̄k = 1
2 (xk + xk−1) and define

Mn =

n∑
j=1

f(x̄j)∆x = [f(x̄1) + f(x̄2) + · · ·+ f(x̄n)]∆x.

Example 7.2.16. Let f(x) = x2 and estimate the signed-area bounded by f on [1, 3] by the midpoint
rule. To keep things simple I’ll just illustrate the calculation with n = 4. Note ∆x = 3−1

4 = 0.5 thus
x̄1 = 1.25, x̄2 = 1.75, x̄3 = 2.25 and x̄4 = 2.75.

M4 = [f(1.25) + f(1.75) + f(2.25) + f(2.75)]∆x = [1.5625 + 3.0625 + 5.0625 + 7.5625](0.5) = 8.625

Clearly L4 < M4 < R4 and if you study the errors you can see L4 < M4 < A < R4.

Notice that the size of the errors will shrink if we increase n. In particular, it is intuitively obvious that
as n → ∞ we will obtain the precise area bounded by the curve. Moreover, we expect that the distinction
between Ln, Rn and Mn should vanish as n → ∞. Careful proof of this seemingly obvious claim is beyond
the scope of this course.

Example 7.2.17. Let f(x) = x2 and calculate the signed-area bounded by f on [1, 3] by the right end-point
rule. To perform this calculation we need to set up Rn for arbitrary n and then take the limit as n → ∞.
Note xk = 1 + k∆x and ∆x = 2/n thus xk = 1 + 2k/n. Calculate,

f(xk) =

(
1 +

2k

n

)2

= 1 +
4k

n
+

4k2

n2

thus,

Rn =

n∑
k=1

f(xk)∆x

=

n∑
k=1

[
1 +

4k

n
+

4k2

n2

]
2

n

=
2

n

n∑
k=1

1 +
8

n2

n∑
k=1

k +
8

n3

n∑
k=1

k2

=
2

n
n+

8

n2

n(n+ 1)

2
+

8

n3

n(n+ 1)(2n+ 1)

6

= 2 + 4

(
1 +

1

n

)
+

8

6

(
2 +

3

n
+

1

n2

)
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Note that 1
n and 1

n2 clearly tend to zero as n→∞ thus

lim
n→∞

Rn = 2 + 4 +
16

6
=

26

3
u 8.6667.

Challenge: show Ln and Mn also have limit 26
3 as n→∞.

Notice that the error in M4 is simply E = 8.6667− 8.625 = 0.0417 which is within 0.5% of the true area. I
will not attempt to give an quantitative analysis of the error in Ln, Rn or Mn at this time. Stewart discusses
the issue in §8.7. Qualitatively, if the function is monotonic then we should expect that the area is bounded
between Ln and Rn.

7.2.3 Riemann sums and the definite integral

In the last section we claimed that it was intuitively clear that as n → ∞ all the different approximations
of the signed-area converge to the same value. You could construct other rules to select the height of the
rectangles. Riemann’s definition of the definite integral is made to exploit this freedom in the limit. Again,
it should be mentioned that this begs an analytical question we are unprepared to answer. For now I have
to ask you to trust that the following definition is meaningful. In other words, you have to trust me that
it doesn’t matter the details of how the point in each subinterval is chosen. Intuitively this is reasonable as
∆x→ 0 as n→∞. Therefore, the subinterval [xj , xj + ∆x]→ {xj} so the choice between the left, right and
midpoints is lost in the limit. Actually, special functions which are very discontinuous could cause problems
to the intuitive claim I just made. For that reason we insist that the function below is continuous on [a, b]
in order that we avoid certain pathologies.

Definition 7.2.18. Riemann sum and the definite integral of continuous function on [a, b].

Suppose that f is continuous on [a, b] suppose x∗k ∈ [xk−1, xk] for all k ∈ N such that 1 ≤ k ≤ n
then an n-th Riemann sum is defined to be

Rn =

n∑
j=1

f(x∗k)∆x = [f(x∗1) + f(x∗2) + · · ·+ f(x∗n)]∆x.

Notice that no particular restriction is placed on the sample points x∗k. This means a Riemann sum could
be a left, right or midpoint rule. This freedom will be important in the proof of the Fundamental Theorem
of Calculus I offer in a later section.
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Definition 7.2.19. definite integrals.

Suppose that f is continuous on [a, b], the definite integral of f from a to b is defined to be
limn→Rn in particular we denote:∫ b

a

f(x) dx = lim
n→
Rn = lim

n→∞

[ n∑
j=1

f(x∗k)∆x

]
.

The function f is called the integrand. The variable x is called the dummy variable of integra-
tion. We say a is the lower bound and b is the upper bound. The symbol dx is the measure.
We also define for a < b∫ a

b

f(x) dx = −
∫ b

a

f(x) dx and

∫ a

a

f(x) dx = 0.

The signed-area bounded by y = f(x) for a ≤ x ≤ b is defined to be
∫ b
a
f(x) dx.

The integral above is known as the Riemann-integral. Other definitions are possible5.

If f is continuous on the intervals (a1, a2), (a2, a3), . . . (ak, ak+1) and each discontinuity is a finite-jump
discontinuity then the definite integral of f on [a1, ak+1] is defined to be the sum of the integrals:∫ ak+1

a1

f(x) dx =

k∑
j=1

∫ aj+1

aj

f(x) dx.

Technically this leaves something out since we have only carefully defined integration over a closed interval
and here we need the concept of integration over a half-open or open interval. To be careful one has the
limit of the end points tending to the points of discontinuity. We discuss this further in Calculus II when we
study improper integrals

In the graph of y = f(x) below I have shaded the positive signed-area green and the negative signed-area
blue for the region −4 ≤ x ≤ 3. The total signed-area is calculated by the definite integral and can also be

found from the sum of the three regions: 11.6− 1.3 + 8.7 = 19.0 =
∫ 3

−4
f(x) dx.

5 the Riemann-Stieltjes integral or Lesbesque are generalizations of this the basic Riemann integral. Riemann-
Stieltjes integral might be covered in some undergraduate analysis courses whereas Lesbesque’s measure theory is
typically a graduate analysis topic.
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Example 7.2.20. Suppose f(x) = sin(x). Set-up the definite integral from [0, π]. We choose R = Rn for
convenience. Note ∆x = π/n and the typical sample point is x∗j = jπ/n. Thus

Rn =

n∑
j=1

sin(x∗j )∆x =

n∑
j=1

sin

(
jπ

n

)
π

n
⇒

∫ π

0

sin(x) dx = lim
n→∞

n∑
j=1

sin

(
jπ

n

)
π

n
.

At this point, most of us would get stuck. In order to calculate the limit above we need to find some identity
to simplify sums such as

sin

(
π

n

)
+ sin

(
2π

n

)
+ · · ·+ sin

(
(n− 1)π

n

)
= ?.

If you figure it out please show me.

Symmetry can help integrate. Note that by the symmetry of the sine function it is clear that
∫ π

0
sin(x) dx =∫ 0

−π sin(x) dx and consequently the signed area bounded by y = sin(x) on [−π, π] is simply zero.

7.2.4 properties of the definite integral

As we just observed a particular Riemann integral can be very difficult to calculate directly even if the
integrand is a relatively simple function. That said, there are a number of intuitive properties for the
definite integral whose proof is easier in general than the preceding specific case.

Proposition 7.2.21. algebraic properties of definite integration.

Suppose f, g are continuous on [a, b] and a < c < b, α ∈ R

(i.)

∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx,

(ii.)

∫ b

a

αf(x)dx = α

∫ b

a

f(x)dx,

(iii.)

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx.
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Proof: since f, g are continuous it follows f + g is likewise continuous hence f, g, f + g are all bounded on
[a, b] and consequently their definite integrals exist (the limit of the Riemann sums must converge to a real
value). Consider then,

∫ b

a

[
f(x) + αg(x)

]
dx = lim

n→∞

[ n∑
j=1

[
f(x∗k) + αg(x∗k)

]
∆x

]

= lim
n→∞

[ n∑
j=1

f(x∗k)∆x+ α

n∑
j=1

g(x∗k)∆x

]

= lim
n→∞

[ n∑
j=1

f(x∗k)∆x

]
+ α lim

n→∞

[ n∑
j=1

g(x∗k)∆x

]

=

∫ b

a

f(x) dx+ α

∫ b

a

g(x) dx

We used the linearity properties of finite sums and the linearity properties of sequential limits in the calcu-
lation above. In the case α = 1 we obtain a proof for (i.). In the case g = 0 we obtain a proof for (ii.). The
proof of (iii.) will require additional thinking. We need to think about a partition of [a, b] and split it into
two partitions, one for [a, c] and the other for [c, b]. Since a < c < b the value of c must appear somewhere
in the partition:

xo = a < x1 < x2 < · · · < xj ≤ c ≤ xj+1 < · · · < xn = a+ n∆x = b.

for some j < n. Note xk = a + k∆x and ∆x = b−a
n for k = 1, 2, . . . , n. Note that as n → ∞ the following

ratios hold (if xj = c then these are exact, however clearly xj → c as n→∞):

∆x =
b− a
n

=
c− a
j

=
b− c
n− j

these simply express the fact that the partition of [a, b] has equal length in each region. In what follows the
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xj is the particular point in each partition of [a, b] close to the midpoint c:∫ b

a

f(x) dx = lim
n→∞

[ n∑
k=1

f(x∗k)∆x

]

= lim
n→∞

[ j∑
k=1

f(x∗k)∆x+

n∑
k=j+1

f(x∗k)∆x

]

= lim
j→∞

[ j∑
k=1

f(z∗k)
c− a
j

]
+ lim
p→∞

[ p∑
l=1

f(y∗l )
b− c
p

]

where z∗k = x∗k and y∗l = x∗l+j for j ≈ n c−ab−a and we have replaced the limit of n → ∞ with that of

p = n − j → ∞ which is reasonable since j ≈ n c−ab−a gives n − j ≈ n − n c−ab−a = n b−a−c+ab−a = n b−cb−a hence
n → ∞ implies n − j → ∞ as b > c and b > a by assumption. Likewise, we replaced n → ∞ with j → ∞
for the first sum. This substitution is again justified since c > a and b > a thus j ≈ n c−ab−a suggests n → ∞
implies j →∞. Finally, denote ∆y = c−a

j and ∆z = b−c
p to obtain

∫ b

a

f(x) dx = lim
j→∞

[ j∑
k=1

f(z∗k)∆z

]
+ lim
p→∞

[ p∑
l=1

f(y∗l )∆y

]

=

∫ c

a

f(z) dz +

∫ b

c

f(y) dy

=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

This concludes the proof of (iii.). �

It’s interesting that what is intuitively obvious is not necessarily so intuitive to prove. Another example of
this pattern is the Jordan curve lemma from complex variables. Basically the lemma simply states that you
can divide the plane into two regions, one inside the curve and one outside the curve. The proof isn’t typically
offered until the graduate course on topology. It’s actually a technically challenging thing to prove precisely.
This is one of the reasons that rigor is so important to mathematics: what is intuitive maybe be wrong.
Historically, appeal to intuition has trapped us for centuries with wrong ideas. However, without intuition
we’d probably not advance much either. My personal belief is that for good mathematics to progress we need
many different types of mathematicians working in concert. We need visionaries to forge ahead sometimes
without proof (Edward Witten is probably the most famous example of this type currently) and then we
need careful analytical types to make sure the visionaries are not just going in circles. In this modern age it
is no longer feasible to expect all major progress be made by people like Gauss who both propose the idea
and provide the proof at levels of rigor sufficient to convince the whole mathematical community. In any
event, whether you are a math major or not, I hope this course helps you understand what mathematics is
about. By now you should be convinced it’s not just about secret formulas and operations on equations.
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Proposition 7.2.22. inequalities of definite integration.

Suppose f, g are continuous on [a, b] and m,M ∈ R,

(i.) if f(x) ≥ 0 for all x ∈ [a, b] then

∫ b

a

f(x)dx ≥ 0,

(ii.) if f(x) ≥ g(x) for all x ∈ [a, b] then

∫ b

a

f(x)dx ≥
∫ b

a

g(x)dx,

(iii.) if m ≤ f(x) ≤M for all x ∈ [a, b] then m(b− a) ≤
∫ b

a

f(x)dx ≤M(b− a).

Proof: since f, g are continuous we can be sure that the limits defining the definite integrals exist. We need
the existence of the limits in order to apply the limit laws in the arguments that follow. Begin with (i.),
assume f(x) ≥ 0 and partition [a, b] as usual a = xo, b = xn and xk = a+ ∆x. Sample points x∗k are chosen
from each subinterval [xk−1, xk]. Consider, for any particular n ∈ N it is clear that:

f(x∗k) ≥ 0 and ∆x =
b− a
n

> 0 ⇒
n∑
k=1

f(x∗k)∆x ≥ 0

Consequently, Rn =
∑n
k=1 f(x∗k)∆x ≥ 0 for all n ∈ N hence by comparison property for sequential limits,

limn→∞Rn ≥ limn→∞(0) = 0 and (i.) follows immediately.

To prove (ii.) construct h(x) = f(x)−g(x) and note f(x) ≥ g(x) for all x ∈ [a, b] implies h(x) = f(x)−g(x) ≥
0 for all x ∈ [a, b]. We apply (i.) to the clearly continuous function h and obtain:∫ b

a

h(x)dx ≥ 0 ⇒
∫ b

a

[
f(x)− g(x)

]
dx ≥ 0 ⇒

∫ b

a

f(x)dx−
∫ b

a

g(x)dx ≥ 0

and (ii.) clearly follows.

Proof of (iii.) follows from observing that if f is bounded by m ≤ f(x) ≤ M for all x ∈ [a, b] then
m ≤ f(x∗k) ≤M for each x∗k ∈ [a, b]. Hence,

n∑
k=1

m ≤
n∑
k=1

f(x∗k) ≤
n∑
k=1

M.

But m,M ∈ R so the summations on the edges are easy:

mn ≤
n∑
k=1

f(x∗k) ≤Mn.

Finally, we can multiply by ∆x = b−a
n to obtain

mn
b− a
n
≤

n∑
k=1

f(x∗k)∆x ≤Mn
b− a
n

⇒ m(b− a) ≤
n∑
k=1

f(x∗k)∆x ≤M(b− a).

Apply the sequential limit squeeze theorem and take the limit as n→∞ to find

m(b− a) ≤ lim
n→∞

[ n∑
k=1

f(x∗k)∆x

]
≤M(b− a)
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This proves (iii.). �

One easy fact to glean from the proof of (iii.) is the following:

Corollary 7.2.23. integral of a constant. Let m ∈ R,

∫ b

a

mdx = m(b− a).

Given that the definite integral was constructed to calculate area this result should not be surprising. Note
0 ≤ y ≤ m for a ≤ x ≤ b describes a rectangle of width b− a and height m.

Problems

Problem 7.2.1. hope to add problems in the future..
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7.3 fundamental theorem of calculus

In the preceding section we detailed a careful procedure for calculating the signed area between y = f(x)
and y = 0 for a ≤ x ≤ b. Unless the function happened to be very simple or enjoyed some obvious
symmetry it was difficult to actually calculate the area. We can write the limits but we typically have no
way of simplifying the sum to evaluate the limit. In this section we will prove the Fundamental Theorem
of Calculus (FTC) which amazingly shows us how to calculate signed-areas without explicit simplification
of the Riemann sum or evaluation of the limit. I begin by studying area functions. I show how the FTC
part I is seen naturally for both the rectangular and triangular area functions. These two simple cases are
discussed to help motivate why we would even expect to find such a thing as the FTC. Then we regurgitate
the standard arguments found in almost every elementary calculus text these days to prove ”FTC part I”
and ”FTC part II”. Finally, I offer a constructive proof of FTC part II and I argue why FTC part I follows
intuitively.

7.3.1 area functions and FTC part I

In that discussion the endpoints a and b were given and fixed in place. We now shift gears a bit. We study
area functions in this section. The idea of an area function is simply this: if we are given a function f
then we can define an area function for f once we pick some base point a. Then A(x) will be defined to be
the signed-area bounded by y = f(t) for a ≤ t ≤ x. I use t in the place of x since we wish to use x in a less
general sense in the pictures that follow here.

Definition 7.3.1. area function.

Given f and a point a we define the area function of f relative to a as follows:

A(x) =

∫ x

a

f(t) dt.

We say that A(x) is the signed-area bounded by f on [a, x].

We would like to look for patterns about area functions. We’ve seen already that direct calculation is dif-
ficult. However, we know two examples from geometry where the area is easily calculated without need of
calculus.

Area function of rectangle: let f(t) = c then the area bounded between t = 0 and t = x is simply length
(x) times height (c). By geometry we have that A(x) =

∫ x
0
c dt = cx, see the picture below:
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If we positioned the rectangle at a ≤ t ≤ x then length becomes (x−a) and the height is still (c). Therefore,
by geometry, A(x) =

∫ x
a
c dt = c(x − a) = cx − ca. Again, see the picture below where I have pictured a

particular x but I have graphed y = A(t) for many t besides x. You can imagine other choices of x and you
should find the area function agrees with the area under the curve.

Area function of triangle: I begin with a triangle formed at the origin with the t-axis and the line y = mt
and t = x. For a particular x, we have base length x and height y = mx thus the area of the triangle is given
by geometry: A(x) =

∫ x
0
mtdt = 1

2mx
2. I picture the function (y = mt in red) as well as the area function

(y = 1
2mt

2 in green) in the picture below:

We calculate the area bounded by y = mt for a ≤ t ≤ x by subtracting the area of the small triangle from
0 ≤ t ≤ a from the area of the larger triangle 0 ≤ t ≤ x as pictured below. Thus from geometry we find
A(x) =

∫ x
a
mtdt = 1

2mx
2 − 1

2ma
2.
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The area under a parabola could also be calculate without use of further theory. We could work out from
the special summation formulas that the area function for y = t2 for a ≤ t ≤ x is given by A(x) =

∫ x
a
t2 dt =

1
3x

3 − 1
3a

3 (I might ask you to show this in a homework). I suspect this is beyond the scope of constructive
geometry (compass/straight-edge and paper). We should notice a pattern:

1. A(x) =
∫ x
a
c dt = cx has dA

dx = c.

2. A(x) =
∫ x
a
mtdt = 1

2mx
2 has dA

dx = mx.

3. A(x) =
∫ x
a
t2 dt = 1

3x
3 has dA

dx = x2.

We suspect that if A(x) =
∫ x
a
f(t) dt then dA

dx = f(x). Let’s examine an intuitive graphical argument for
why this is true for an arbitrary function:

Formally, dA = A(x + dx) − A(x) = f(x)dx hence dA/dx = f(x). This proof made sense to you (if it
did) because you believe in Leibniz’ notation. We should offer a rigorous proof since this is one of the most
important theorems in all of calculus.
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Theorem 7.3.2. Fundamental Theorems of Calculus part I (FTC I).

Suppose f is continuous on [a, b] and x ∈ [a, b] then,

d

dx

∫ x

a

f(t) dt = f(x).

Proof: let A(x) =
∫ x
a
f(t) dt and note that

A(x+ h) =

∫ x+h

a

f(t) dt =

∫ x

a

f(t) dt+

∫ x+h

x

f(t) dt = A(x) +

∫ x+h

x

f(t) dt

Therefore, the difference quotient for the area function is simply as follows:

A(x+ h)−A(x)

h
=

1

h

∫ x+h

x

f(t) dt

However, note that by continuity of f we can find bounds for f on J = [x, x+ h] (if h > 0) or J = [x+ h, x]
(if h < 0). By the extreme value theorem, there exist u, v ∈ J such that f(u) ≤ f(x) ≤ f(v) for all x ∈ J .
Therefore, if h > 0, we can apply the inequality properties of definite integrals and find

(x+ h− x)f(u) ≤
∫ x+h

x

f(t) dt ≤ (x+ h− x)f(v) ⇒ f(u) ≤ 1

h

∫ x+h

x

f(t) dt ≤ f(v)

If h < 0 then dividing by h reverses the inequalities hence f(v) ≤ 1
h

∫ x+h

x
f(t) dt ≤ f(u). Finally, observe that

limh→0 u = x and limh→0 v = x. Therefore, by continuity of f , limh→0 f(u) = f(x) and limh→0 f(v) = f(x).

Remember, f(u) ≤ 1
h

∫ x+h

x
f(t) dt ≤ f(v) and apply the squeeze theorem to deduce:

lim
h→0

1

h

∫ x+h

x

f(t) dt = f(x)

Consequently,

lim
h→0

A(x+ h)−A(x)

h
= f(x)

Which, by definition of the derivative for A, gives dA
dx = f(x). �

The FTC part I is hardly a solution to the area problem. It’s just a curious formula. The FTC part II takes
this curious formula and makes it useful. It is true there are a few functions defined as area functions hence
the differentiation in the FTC I is physically interesting. However, such problems are fairly rare. You can
read about the Fresnel function in the text.
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Remark 7.3.3. a method to derive antiderivatives without guessing.

Notice that the FTC I also gives us a method to calculate antiderivatives without guessing. But, I can
only derive a few very simple antiderivatives. For example, here is a derivation of the antiderivative
of f(x) = 3. I calculate that

∫
3 dx = 3x+ c without guessing:

7.3.2 FTC part II, the standard arguments

The fact that d
dx

∫ x
a
f(t) dt = f(x) is just half of what we observed in our examination of the rectangular

and triangular area functions. If the area was measured away from the origin on some region a ≤ t ≤ x then
we can observe another pattern: the area was given by the difference of the antiderivative of the
integrand at the end points

1.
∫ x
a
c dt = cx− ca

2.
∫ x
a
mtdt = 1

2mx
2 − 1

2ma
2

This suggests the following theorem may be true:

Theorem 7.3.4. Fundamental Theorems of Calculus part II (FTC II).

Suppose f is continuous on [a, b] and has antiderivative F then∫ b

a

f(x) dx = F (b)− F (a).

Proof: consider the area function based at a: A(x) =
∫ x
a
f(t) dt. The FTC I says that A is an antiderivative

of f . Since F is given to be another antiderivative we know that F ′(x) = A′(x) = f(x) which means F and
A differ by at most a constant c ∈ R: F (x) = A(x) + c. Since F and A are differentiable on [a, b] it follows
they are also continuous on [a, b] hence,

F (a) = lim
x→a+

F (x) = lim
x→a+

[A(x) + c] = A(a) + c =

∫ a

a

f(t) dt+ c = c

and

F (b) = lim
x→b−

F (x) = lim
x→b−

[A(x) + c] = A(b) + c =

∫ b

a

f(t) dt+ c.
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Hence, F (b)− F (a) =
∫ b
a
f(t) dt+ c− c =

∫ b
a
f(t) dt. Of course, t is just the dummy variable of integration

so we can change it to x at this point to complete the proof of the FTC part II. �

Example 7.3.5. We return to Example 7.2.20 where we were stuck due to an incalculable summation.
We wish to calculate

∫ π
0

sin(x) dx. Observe that F (x) = − cos(x) has F ′(x) = sin(x) hence this is a valid
antiderivative for the given integrand sin(x). Apply the FTC part II to find the area:∫ π

0

sin(x) dx = F (π)− F (0) = − cos(π) + cos(0) = 2.

Obviously this is much easier than calculation from the definition of the Riemann integral.

Definition 7.3.6. evaluation notation.

We define the symbols below to denote evaluation of an expression:

F (x)

∣∣∣∣b
a

= F (b)− F (a)

In this notation the FTC part II is written as follows:∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

= F (b)− F (a).

7.3.3 FTC part II an intuitive constructive proof

Let me restate the theorem to begin:

FTC II: Suppose f is continuous on [a, b] and has antiderivative F then∫ b

a

f(x) dx = F (b)− F (a).

Proof: We seek to calculate
∫ b
a
f(x) dx. Use the usual partition for the n-th Riemann sum of f on [a, b];

xo = a, x1 = a+ ∆x, . . . , xn = b where ∆x = b−a
n . Suppose that f has an antiderivative F on [a, b]. Recall

the Mean Value Theorem for y = F (x) on the interval [xo, x1] tells us that there exists x∗1 ∈ [xo, x1] such
that

F ′(x∗1) =
F (x1)− F (xo)

x1 − xo
=
F (x1)− F (xo)

∆x

Notice that this tells us that F ′(x∗1)∆x = F (x1) − F (xo). But, F ′(x) = f(x) so we have found that
f(x∗1)∆x = F (x1)−F (xo). In other words, the area under y = f(x) for xo ≤ x ≤ x1 is well approximated by
the difference in the antiderivative at the endpoints. Thus we choose the sample points for the n-th Riemann
sum by applying the MVT on each subinterval to select x∗j such that f(x∗j )∆x = F (xj) − F (xj−1). With
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this construction in mind calculate:∫ b

a

f(x) dx = lim
n→∞

( n∑
j=1

f(x∗j )∆x

)

= lim
n→∞

( n∑
j=1

[
F (xj)− F (xj−1)

])
= lim
n→∞

(
F (x1)− F (xo) + F (x2)− F (x1) + · · ·+ F (xn)− F (xn−1)

)
= lim
n→∞

(
F (xn)− F (xo)

)
= lim
n→∞

(
F (b)− F (a)

)
= F (b)− F (a).�

This result clearly extends to piecewise continuous functions which have only finite jump discontinuities.
We can apply the FTC to each piece and take the sum of those results. This Theorem is amazing. We can
calculate the area under a curve based on the values of the antiderivative at the endpoints. Think about

that, if a = 1 and b = 3 then
∫ 3

1
f(x) dx depends only on F (3) and F (1). Doesn’t it seem intuitively likely

that what value f(2) takes should matter as well? Why don’t we have to care about F (2) ? The values of
the function at x = 2 certainly went into the calculation of the area, if we calculate a left sum we would
need to take values of the function between the endpoints. The cancellation that occurs in the proof is the
root of why my naive intuition is bogus.

Next, let me show you how to derive FTC I from FTC II 6. We have just proved that∫ b

a

f(t) dt = F (b)− F (a).

Suppose b = x and consider differentiating with respect to x,

d

dx

∫ x

a

f(t) dt =
d

dx
[F (x)− F (a)] =

dF

dx
= f(x).

thus we obtain FTC I simply by differentiating FTC II. Moreover, we can obtain a more general result
without doing much extra work:

Theorem 7.3.7. differentiation of integral with variable bounds. (FTC III for fun)

Suppose u, v are differentiable functions of x and f is continuous where it is integrated,

d

dx

∫ v(x)

u(x)

f(t) dt = f(v(x))
dv

dx
− f(u(x))

du

dx
.

Proof: let f have antiderivative F and apply FTC II at each x to obtain:∫ v(x)

u(x)

f(t) dt = F (v(x))− F (u(x))

6note I didn’t need to use FTC I in the argument for the FTC II in this section, instead I needed only assume
that there existed an antiderivative for the given integrand
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now differentiate with respect to x and apply the chain-rule,

d

dx

∫ v(x)

u(x)

f(t) dt =
dF

dx
(u(x))

dv

dx
− dF

du
(u(x))

du

dx

But, dF
dx = f(x) hence d

dx

∫ v(x)

u(x)
f(t) dt = f(u(x)) dvdx − f(u(x))dudx . �

The examples based on FTC III are embarrassingly simple once you understand what’s happening.

Example 7.3.8.

d

dx

∫ x

3

cos(
√
t) dt = cos(

√
x)
d(
√
x)

dx
− cos(

√
3)
d(3)

dx
= cos(

√
x)

1

2
√
x
.

Example 7.3.9.

d

dx

∫ x3

ex
tanh(t2) dt = tanh((x3)2)

d(x3)

dx
− tanh((ex)2)

d(ex)

dx
= 3x2 tanh(x6)− ex tanh(e2x).

Example 7.3.10. The function Si is defined by Si(x) =
∫ x

0
sin(t)
t dt for x 6= 0 and Si(0) = 0. This function

arises in Electrical Engineering in the study of optics.

d

dx
(Si(x)) =

d

dx

∫ x

0

sin(t)

t
dt =

sin(x)

x
.

Example 7.3.11.

d

dx

∫ x2+3

sin(x)

√
t dt =

√
x2 + 3

d(x2 + 3)

dx
−
√

sin(x)
d(sin(x))

dx
= 2x

√
x2 + 3− cos(x)

√
sin(x).

Example 7.3.12. Suppose f is continuous on R. It follows that f has an antiderivative hence the FTC III
applies:

d

dx

∫ −x
x2

f(u) du = f(−x)
d(−x)

dx
− f(x2)

d(x2)

dx
= −f(−x)− 2xf(x2).

Problems

Problem 7.3.1. hope to add problems in the future..
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.
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7.4 definite integration

Example 7.4.1. ∫ 1

0

2x dx =
1

ln(2)
2x
∣∣∣∣1
0

=
1

ln(2)
(21 − 20) =

1

ln(2)
.

Example 7.4.2. Let a, b be constants,∫ b

a

sinh(t) dt = cosh(t)

∣∣∣∣b
a

= cosh(b)− cosh(a).

Example 7.4.3. ∫ −2

−4

dx

x
= ln |x|

∣∣∣∣−2

−4

= ln | − 2| − ln | − 4| = ln(2)− ln(4) = ln(1/2).

If we had neglected the absolute value function in the antiderivative then we would have obtained an incorrect
result. The absolute value bars are important for this integral. Note the answer is negative here because
y = 1/x is under the x-axis in the region −4 ≤ x ≤ −2.

Example 7.4.4. ∫ 9

1

dx√
5x

=
1√
5

∫ 9

1

dx√
x

=
2
√
x√
5

∣∣∣∣9
1

=
2
√

9√
5
− 2
√

1√
5

=
4√
5
.

Example 7.4.5. Let n > 0 and consider,∫ ln(n+1)

ln(n)

ex dx = eln(n+1) − eln(n) = n+ 1− n = 1.

This is an interesting result. I’ve graphed a few examples of it below. Notice how as n increases the distance
between ln(n) and ln(n + 1) decreases, yet the exponential increases such that the bounded area still works
out to one-unit.
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7.4.1 area vs. signed-area

Example 7.4.6. Calculate the signed-area bounded by y = 3x2 − 3x− 6 for 0 ≤ x ≤ 2.∫ 2

0

(3x2 − 3x− 6)dx = (x3 − 3

2
x2 − 6x)

∣∣∣∣2
0

= 8− 3

2
(4)− 12 = 8− 18 = −10.

Here’s an illustration of the calculation (the blue part):

The green area is calculated by∫ 4

2

(3x2 − 3x− 6)dx = (x3 − 3

2
x2 − 6x)

∣∣∣∣4
2

= (64− 3

2
(16)− 24) + 10 = 64− 48 + 10 = 26.

Example 7.4.7. If we wanted to calculate the area bounded by y = f(x) = 3x2 − 3x − 6 and y = 0 for
0 ≤ x ≤ 4 then we need to also count negative-signed-area as positive. This is nicely summarized by stating
we should integrate the absolute value of the function to obtain the area bounded between the function and the
x-axis. Generally analyzing an absolute value of a function takes some work, but given the previous example
it is clear how to break up the positive and negative cases:∫ 4

0

|3x2 − 3x− 6|dx =

∫ 2

0

|3x2 − 3x− 6|dx+

∫ 4

2

|3x2 − 3x− 6|dx

=

∫ 2

0

[−(3x2 − 3x− 6)]dx+

∫ 4

2

(3x2 − 3x− 6)dx

= 10 + 26

= 36.

Here’s a picture of the function we just integrated. You can see how the absolute value flips the negative part
of the original function up above the x-axis.
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Remark 7.4.8. absolute values and areas.

To calculate the area bounded by y = f(x) for a ≤ x ≤ b we may calculate

Area =

∫ b

a

|f(x)| dx.

Example 7.4.9. Calculate the area bounded by y = cos(x) on 0 ≤ x ≤ 5π
2 .

∫ 3π

0

| cos(x)|dx =

∫ π
2

0

cos(x)dx−
∫ 3π

2

π
2

cos(x)dx+

∫ 5π
2

3π
2

cos(x)dx

= sin(x)

∣∣∣∣π2
0

− sin(x)

∣∣∣∣ 3π2
π
2

+ sin(x)

∣∣∣∣ 5π2
3π
2

= (sin(
π

2
)− sin(0))− (sin(

3π

2
)− sin(

π

2
)) + (sin(

5π

2
− sin(

3π

2
))

= 5.

7.4.2 average of a function

To calculate the average of finitely many things we can just add all the items together then divide by the
number of items. If you draw a bar chart and find the area of all the bars and then divide by the number
of bars then that gives the average. A function f(x) takes on infinitely many values on a closed interval
so we cannot just add the values, however, we can calculate the area and divide by the length. This is the
continuous extension of the averaging concept:

Definition 7.4.10. average of a function over a closed interval.

The average value of f on [a, b] is defined by

favg =
1

b− a

∫ b

a

f(x) dx.

Example 7.4.11. Suppose f(x) = 4x3. Find the average of f on [0, 2].

favg =
1

2

∫ 2

0

4x3 dx =
1

2
x4

∣∣∣∣2
0

= 8.

Example 7.4.12. Suppose f(x) = sin(x). Find the average of f on [0, 2π].

favg =
1

2π

∫ 2π

0

sin(x) dx =
−1

2π
cos(x)

∣∣∣∣2π
0

= 0.
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Example 7.4.13. In the case of constant acceleration a = −g we calculated that v(t) = vo − gt where vo, g
were constants. Let’s calculate the average velocity over some time interval [t1, t2],

vavg =
1

t2 − t1

∫ t2

t1

(vo − gt) dt

=
1

t2 − t1
[vot−

g

2
t2]

∣∣∣∣t2
t1

=
1

t2 − t1

[
vo(t2 − t1)− g

2

(
t22 − t21

)]
=

1

t2 − t1

[
vot2 −

g

2
t22 − vot1 +

g

2
t21

]
=
y(t2)− y(t1)

t2 − t1
where I have used a little imagination and a recollection that y(t) = yo + vot− g

2 t
2. The result is comforting,

we find the average velocity is the average of the average velocity function.

There is a better way to calculate the last example. It will provide the first example of the next topic.

7.4.3 net-change theorem

Combining FTC I and FTC II we find a very useful result: the net-change theorem.

Theorem 7.4.14. net change theorem. ∫ b

a

df

dt
dt = f(b)− f(a).

Example 7.4.15. Let v(t) be the instantaneous velocity where v(t) = dy
dt then we can calculate the average

velocity over some time interval [t1, t2],

vavg =
1

t2 − t1

∫ t2

t1

v(t) dt

=
1

t2 − t1

∫ t2

t1

dy

dt
dt

=
1

t2 − t1
(
y(t2)− y(t1)

)
=
y(t2)− y(t1)

t2 − t1
.

Notice we didn’t even need to know the details of the velocity function.

We’ll see more examples of like this one when we discuss infinitesimal methods in the next Chapter. Your
text also has many more examples.

Problems

Problem 7.4.1. hope to add problems in the future..
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7.5 u-substitution

The integrations we have done up to this point have been elementary. Basically all we have used is lin-
earity of integration and our basic knowledge of differentiation. We made educated guesses as to what the
antiderivative was for a certain class of rather special functions. Integration requires that you look ahead
to the answer before you get there. For example,

∫
sin(x) dx. To reason this out we think about our basic

derivatives, we note that the derivative of cos(x) gives − sin(x) so we need to multiply our guess by -1 to
fix it. We conclude that

∫
sin(x) dx = − cos(x) + c. The logic of this is essentially educated guessing. You

might be a little concerned at this point. Is that all we can do? Just guess? Well, no. There is more. But,
those basic guesses remain, They form the basis for all elementary integration theory.

The new idea we look at in this section is called ”u-substitution”. It amounts to the reverse chain
rule. The goal of a properly posed u-substitution is to change the given integral to a new integral which
is elementary. Typically we go from an integration in x which seems incalculable to a new integration in
u which is elementary. For the most part we will make direct substitutions, these have the form u = g(x)
for some function g however, this is not strictly speaking the only sort of substitution that can be made.
Implicitly defined substitutions such as x = f(θ) play a critical role in many interesting integrals, we will
deal with those more subtle integrations in a later chapter when we discuss trigonometric substitution.

Finally, I should emphasize that when we do a u-substitution we must be careful to convert each and
every part of the integral to the new variable. This includes both the integrand(f(x)) and the measure(dx)
in an indefinite integral

∫
f(x) dx. Or the integrand(f(x)), measure(dx) and upper and lower bounds a, b

in a definite integral
∫ b
a
f(x) dx. I will provide a proof of the method at the conclusion of the section for a

change of pace. Examples first this time.

7.5.1 u-substitution in indefinite integrals

Example 7.5.1.∫
xex

2

dx =

∫
xeu

du

2x
let u = x2,

du

dx
= 2x and dx =

du

2x

=
1

2

∫
eudu see how all the x’s cancelled, this has to happen.

=
1

2
eu + c not done yet.

=
1

2
ex

2

+ c differentiate to check if in doubt.

Example 7.5.2. Let a, b be constants. If a 6= 0 then,∫
(ax+ b)13dx =

∫
u13 du

a
let u = ax+ b,

du

dx
= a and dx =

du

a

=
1

14a
u14 + c

=
1

14a
(ax+ b)14 + c.

If a = 0 then clearly
∫

(ax+ b)13dx =
∫
b13dx = b13x+ c.
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Example 7.5.3.∫
5
x
3 dx =

∫
5u(3du) let u =

x

3
,
du

dx
=

1

3
and dx = 3du

=
3

ln(5)
5u + c

=
3

ln(5)
5
x
3 + c.

Example 7.5.4.∫
tan(x)dx =

∫
sin(x)

cos(x)
dx

=

∫
−du
u

let u = cos(x),
du

dx
= − sin(x) and sin(x)dx = −du

= − ln(|u|) + c

= − ln(| cos(x)|) + c.

Notice that − ln | cos(x)| = ln | cos(x)|−1 = ln |sec(x)| hence
∫

tan(x)dx = ln | sec(x)|+ c.

Example 7.5.5.∫
2x

1 + x2
dx =

∫
du

u
let u = 1 + x2,

du

dx
= 2x and 2xdx = du

= ln(|u|) + c

= ln(1 + x2) + c.

Notice that x2 + 1 > 0 for all x ∈ R thus |x2 + 1| = x2 + 1. We should only drop the absolute value bars if
we have good reason.

Example 7.5.6.∫
3
√

1− 3xdx =

∫
3
√
u
du

−3
let u = 1− 3x,

du

dx
= −3 and dx =

du

−3

=
3

4
u

4
3 + c

=
3

4
(1− 3x)

4
3 .

Example 7.5.7. ∫
dx

x+ b
=

∫
du

u
let u = x+ b thus du = dx

= ln |u|+ c

= ln |x+ b|+ c.
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Example 7.5.8. suppose x > 0.∫
x2dx√
x2 − x4

=

∫
x2dx

x
√

1− x2

=

∫
xdx√
1− x2

=

∫
−du
2
√
u

let u = 1− x2 thus −du/2 = xdx

=
−1

2
2
√
u+ c

= −
√

1− x2 + c.

Notice, we start to see examples where educated guessing alone probably wouldn’t have solved it. Of course
there are numerous software programs to assist with integration these days but unless you do a bunch of
these at some point in your life you’ll never really understand what the computer is doing.

Example 7.5.9. suppose x > 0.∫
ln(x)dx

x
=

∫
udu let u = ln(x) thus du = dx/x

=
1

2
u2 + c

=
1

2
ln(x)2 + c.

Example 7.5.10.

∫
sin(3θ)dθ =

∫
sin(u)

du

3
let u = 3θ thus dθ =

du

3

=
−1

3
cos(u) + c

=
−1

3
cos(3θ) + c.

Example 7.5.11.

∫
sin−1(z)√

1− z2
dz =

∫
udu let u = sin−1(z) thus du =

dz√
1− z2

=
1

2
u2 + c

=
1

2
[sin−1(z)]2 + c.
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Example 7.5.12.∫
t cos(t2 + π)dt =

1

2

∫
cos(u)du let u = t2 + π thus tdt =

du

2

=
1

2
sin(u) + c

=
1

2
sin(t2 + π) + c.

If you understand the example below then you will be able to integrate any odd power of sine or cosine.

Example 7.5.13.∫
sin3(x)dx =

∫
sin2(x) sin(x)dx

=

∫
(1− cos2(x)) sin(x)dx

=

∫
(1− u2)(−du) let u = cos(x) thus du = − sin(x)dx

=

∫
(u2 − 1)du

=
1

3
u3 − u+ c

=
1

3
cos3(x)− cos(x) + c.

Example 7.5.14. suppose a 6= 0∫
dx

x2 + a2
=

1

a2

∫
dx

x2

a2 + 1

=
1

a2

∫
adu

u2 + 1
let u =

x

a
thus adu = dx

=
1

a
tan−1(u) + c

=
1

a
tan−1

[
x

a

]
+ c.

Example 7.5.15. suppose a 6= 0∫
cos(aex + 3)exdx =

1

a

∫
cos(u)du let u = aex + 3 thus du/a = exdx

=
1

a
sin(u) + c

=
1

a
sin(aex + 3) + c.
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Example 7.5.16.∫
sin2(θ)dθ =

∫
1

2

[
1− sin2(θ)

]
dθ by trigonmetry.

=
1

2

∫
dθ − 1

2

∫
cos(2θ)dθ

=
θ

2
− 1

4
sin(2θ) + c.

In the preceding example I omitted a u-substitution because it was fairly obvious. In the next example I
demonstrate a notation which allows you to perform u-substitution without even stating explicitly the u.
You will not find this notation in many American textbooks.

Example 7.5.17.∫
4 sinh2(x)dx = 4

∫ [
1

2

(
ex − e−x

)]2

dx by definition of sinh(x).

=

∫ [
(ex)2 − 2exe−x + (e−x)2

]
dx

=

∫ [
e2x − 2 + e−2x

]
dx

=

∫
e2xdx− 2

∫
dx+

∫
e−2xdx

=
1

2

∫
e2xd(2x)− 2x− 1

2

∫
e−2xd(−2x)

=
1

2
e2x − 2x− 1

2
e−2x + c.

= sinh(2x)− 2x+ c.

Interesting, if you trust my calculation then we may deduce

4 sinh2(x) =
d

dx
[sinh(2x)− 2x] = 2 cosh(2x)− 2

thus sinh2(x) = 1
2 [cosh(2x)− 1].

7.5.2 u-substitution in definite integrals

There are two ways to do these. I expect you understand both methods.

1. Find the antiderivative via u-substitution and then use the FTC to evaluate in terms of the given
upper and lower bounds in x. (see Example 7.5.18 below)

2. Do the u-substitution and change the bounds all at once, this means you will use the FTC and evaluate
the upper and lower bounds in u. (see Example 7.5.19 below)

I will deduct points if you write things like a definite integral is equal to an indefinite integral ( just leave
off the bounds during the u-substitution). The notation is not decorative, it is necessary and important to
use correct notation.
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Example 7.5.18. We previously calculated that
∫
t cos(t2 +π)dt = 1

2 sin(t2 +π)+c. We can use this together
with the FTC to calculate the following definite integral:∫ √π

2

0

t cos(t2 + π)dt =
1

2
sin(t2 + π)

∣∣∣∣
√

π
2

0

=
1

2
sin(π2 + π)− 1

2
sin(π)

=
−1

2
.

This illustrates method (1.) we find the antiderivative off to the side then calculate the integral using the
FTC in the x-variable. Well, the t-variable here. This is a two-step process. In the next example I’ll work
the same integral using method (2.). In contrast, that is a one-step process but the extra step is that you
need to change the bounds in that scheme. Generally, some problems are easier with both methods. Also,
sometimes you may be faced with an abstract question which demands you understand method 2.).

Example 7.5.19.∫ √π
2

0

t cos(t2 + π)dt =
1

2

∫ 3π
2

π

cos(u)du let u = t2 + π thus tdt =
du

2

=
1

2
sin(u)

∣∣∣∣ 3π2
π

also u
(
π
2

)
=

3π

2
and u(0) = π

=
1

2
sin( 3π

2 )− 1

2
sin(π)

=
−1

2
.

Example 7.5.20.∫ 9π2

4π2

sin(
√
x)dx√
x

=

∫ 3π

2π

sin(u)(2du) let u =
√
x thus 2du =

dx√
x

= −2 cos(u)

∣∣∣∣3π
2π

also u(9π2) =
√

9π2 = 3π and u(4π2) =
√

4π2 = 2π

= −2 cos(3π) + 2 cos(2π)

= 4.

7.5.3 theory of u-substitution

In the past 20 examples we’ve seen how the technique of u-substitution works. To summarize, you take an
integrand and measure in terms of x (say g(f(x))dx) and propose a new variable u = f(x) for some function
f . Then we differentiate du

dx = f ′(x) and solve for dx = du
f ′(x) which gives us∫

g(f(x)) dx =

∫
g(u)

du

f ′(x)

and if our choice of u is well thought out then the expression g(u)
f ′(x) can be simplified into a nice elementary

integrable function h(u) (meaning
∫
h(u) du was on our list of elementary integrals). In a nutshell, that is

what we did in each example. Let’s me raise a couple questions to criticize the method:
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1. what in the world do I mean by dx = du
f ′(x) ? This sort of division is not rigorous.

2. what if f ′(x) = 0? Especially if we were doing an integration with bounds, is it permissible to have a
point in the domain of integration where the substitution seems to indicate division by zero?

Question (1.) is not too hard to answer. Let me propose the formal result as a theorem.

Theorem 7.5.21. change of variables in integration.

Suppose g is continuous on the connected interval J with endpoints f(a) and f(b) and f is differen-
tiable on a, b then

1. [∫
g(u) du

]∣∣∣∣
u=f(x)

=

∫
g(f(x))

df

dx
dx

2. ∫ f(b)

f(a)

g(u) du =

∫ b

a

g(f(x))
df

dx
dx.

Proof: Note that g continuous indicates the existence of an antiderivative G on J . Let u = f(x) and apply
the chain-rule to differentiate G(u),

d

dx
[G(u)] = G′(u)

du

dx
= g(u)

df

dx
= g(f(x))

df

dx

At this stage we have already proved the indefinite integral substitution rule:

G(f(x)) =

[∫
g(u) du

]∣∣∣∣
u=f(x)

=

∫
g(f(x))

df

dx
dx = H(x) + c.

Use the result above and FTC II to see why (2.) is true:∫ b

a

g(f(x))
df

dx
dx = H(b)−H(a) = G(f(b))−G(f(a)) =

∫ f(b)

f(a)

g(u) du.�

I assumed continuity for simplicity of argument. One could prove a more general result for piecewise con-
tinuous functions. Furthermore, note we never really divided by f ′(x) thus f ′(x) = 0 does not rule out the
applicability of this theorem.

Example 7.5.22. Consider the following problem: calculate∫ 2π

0

esin(x) cos(x) dx.

In this case we should identify u = f(x) = sin(x) and g(u) = eu. Clearly the hypotheses of the theorem above
are met. Moreover, f(0) = sin(0) = 0 and f(2π) = sin(2π) = 0 hence∫ 2π

0

esin(x) cos(x) dx =

∫ 2π

0

esin(x) d(sin(x))

dx
dx =

∫ 0

0

eu du = 0.
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For whatever reason, using the notation above seems unnatural to most people so we instead think about
substituting formulas with u into the integrand. Same calculation, but this time with our usual approach:∫ 2π

0

esin(x) cos(x) dx =

∫ 0

0

eu cos(x)
du

cos(x)
let u = sin(x) thus dx =

du

cos(x)

=

∫ 0

0

eu du also u(0) = sin(0) and u(2π) = sin(2π).

= 0.

The apparent division by zero was just a sloppy way of communicating application of the theorem for variable
change.

This phenomenon of the bounds collapsing to a point will only occur if du
dx = 0 somewhere along a ≤ x ≤ b.

Otherwise, du
dx 6= 0 hence u is strictly monotonic on [a, b] hence either u(a) < u(b) or u(b) > u(a).

Remark 7.5.23. geometric meaning of u-substitution.

The geometric meaning of substitution is an interesting topic that this current version of my notes
does not address. You are free to read the text on that topic and it is probable I will spend a few
minutes of lecture contemplating the geometry of u-substitution.

Well, that’s about it for the mathematics of integration this semester. I do expect you can do many
trigonometric integrals which capitalize on your knowledge of trigonometry. For example,

∫
cos2(x) dx,∫

tan2(x) dx and so forth. However, we are necessarily limited this semester. Many integrals I cannot ask
simply because we have yet to cover integration by parts or trigonometric substitution or partial fractions.
Those techniques are covered in Calculus II. Shortcomings aside, we can solve a great variety of applied
problems with tools discovered thus far. This is the focus of the remainder of this course: how can we apply
integration to ”real world” problems?

Problems

Problem 7.5.1. hope to add problems in the future..
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7.6 integrals of trigonometric functions

In this section we return to the problem of integrating trigonometric functions. The tools used here are a
combination of basic u-substitution, judiciously chosen trigonometric identities7 I’ll begin by attacking the
problem of sin3(x).

Example 7.6.1. ∫
sin3(x)dx =

∫
sin2(x) sin(x)dx

=

∫ [
1− u2

]
(−du) (where u = cos(x))

= −u+
1

3
u3 + c

= − cos(x) +
1

3
cos3(x) + c

The integral of sin4(x) is not as easy in my view.

Example 7.6.2. ∫
sin4(x)dx =

∫ [
sin2(x)

]2
dx

=

∫ [
1

2

(
1− cos(2x)

)]2

dx

=
1

4

∫ [
1− 2 cos(2x) + cos2(2x)

]
dx

=
x

4
− 1

4
sin(2x) +

1

8

∫
(1 + cos(4x))dx

=
x

4
− 1

4
sin(2x) +

x

8
+

1

32
sin(4x) + c

=
3x

8
− 1

4
sin(2x) +

1

32
sin(4x) + c.

If you ponder the methods we just used to integrate sink(x) you should be able to integrate any sum
or product of sin(x) and cos(x). For example, see if you can calculate the integrals

∫
sin(x) cos(x)dx or∫

sin2(x) cos2(x)dx. Sums of products and reciprocals of sine and cosine require more thought but, many
are not too difficult.

Example 7.6.3. Let let u = cos(x) in the calculation below:∫
sin(x)

cos(x)
dx =

∫
−du
u

= − ln | cos(x)|+ c.

Therefore,
∫

tan(x)dx = ln | sec(x)|+ c.

7next semester you will learn to extend this section a bit by the method of Integration By Parts (IBP). A mirror
of this section with a few extra examples can be found in my calculus II notes.
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I hope you can figure out
∫

cot(x)dx with ease. It is important to remember tan2(x) + 1 = sec2(x) and∫
sec2(x)dx = tan(x) + c in the examples that follow.

Example 7.6.4. ∫
tan2(x)dx =

∫
(sec2(x)− 1)dx

= tan(x)− x+ c.

Example 7.6.5. We let u = tan(x) so du = sec2(x)dx,∫
sec2(x) tan2(x)dx =

∫
u2du

=
1

3
u3 + c

=
1

3
tan3(x) + c.

Example 7.6.6. ∫
tan4(x)dx =

∫
tan2(x)(sec2(x)− 1)dx

=

∫
tan2(x) sec2(x)dx−

∫
tan2(x)dx

=

∫
tan2(x)d(tan(x))−

∫
tan2(x)dx

=
1

3
tan3(x) + tan(x)− x+ c.

The notation used in the third line of the calculation above is a slick implicit notation for indicating a
u = tan(x) substitution. Every so often I make use of this notation. In any event, you should be able to
integrals of expressions like

∫
sec6(x)dx or

∫
cot2(x)dx or

∫
cot2(x) csc2(x)dx using arguments paralelling

the previous triple of examples. What lies beneath is scarier.

Example 7.6.7. Observe that if u = sec(x) + tan(x) then du
u = sec(x)dx (work it out for yourself !). With

this bit of trivia in mind note: ∫
sec(x)dx =

∫
du

u

= ln |u|+ c

= ln | sec(x) + tan(x)|+ c.

Ok, by now you should expect me to ask if you can integrate
∫

csc(x)dx given the patterns above. Given
our work thus far it ought to be clear that integrating even powers of secant is actully pretty easy. On the
other hand, the first odd power above required a stroke of genious. If you try to convert to a sine/cosine
integral it does not help much if you were wondering. With techniques from second semester calculus I can
show you a less clever way of calculating the integral (the way I show here is best).
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Remark 7.6.8.

See Section 2.9 for an account of how to use and derive trigonometric identities. If you invest a little
time to understand how the complex exponential function eix = cosx+ i sinx encodes both sine and
cosine together in a unified object subject to the expected laws of exponents eixeiy = eix+iy then
you can derive trig. identities. The trouble of remembering dozens of identities is replaced with the
trouble of remembering:

sinx =
1

2i
(eix − e−ix) and cosx =

1

2
(eix + e−ix)

Alternatively, you can memorize the adding angle formulas and derive most everything from that
pair of identities. In some sense these approaches are just alternate notations for the same underlying
structure. Naturally, using these formulas without justification is no more logical than utilizing the
adding angles formulas without deriving them. Options aside, these formulas are correct, meaningful
and have been worthwhile to science and mathematics for a couple centuries.

We keep in mind that the adding angles formula for cosine is cos(θ + β) = cos θ cosβ − sin θ sinβ whereas

the adding angles formula for sine is sin(θ + β) = sin θ cosβ + cos θ sinβ . Together these adding angles

formulas for sine and cosine yield another for tangent; tan(θ + β) =
tan θ + tanβ

1− tan θ tanβ
. Finally the product

identities for sine and cosine are also very useful and for most of us far from obvious;

cos(ax) cos(bx) =
1

2
cos[(a+ b)x] +

1

2
cos[(a− b)x]

and

sin(ax) sin(bx) =
1

2
cos[(a+ b)x]− 1

2
cos[(a− b)x]

and

cos(ax) sin(bx) =
1

2
sin[(a+ b)x] +

1

2
sin[(a− b)x] .

The product formulas are very important to the study of constructive and destructive inteference in waves.
They explain where beats come from among other things. Also, it is worth mentioning that if you remember
one of these carefully then you can get others from differentiating. Try differentiating sin(a + x) to derive
the adding angles formula for cos(a+ x).

Example 7.6.9. ∫
cos(3x) sin(5x)dx =

∫ [
1

2
sin(8x) +

1

2
sin(−2x)

]
dx

=
1

2

∫
sin(8x)dx− 1

2

∫
sin(2x)dx

=
−1

16
cos(8x)− 1

4
cos(2x) + c.
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Example 7.6.10. ∫
cos(3x) cos(5x)dx =

∫ [
1

2
cos(8x) +

1

2
cos(−2x)

]
dx

=
1

2

∫
cos(8x)dx+

1

2

∫
cos(2x)dx

=
1

16
sin(8x) +

1

4
sin(2x) + c.

Example 7.6.11. ∫
sin(3x) sin(5x)dx =

∫ [
1

2
cos(8x)− 1

2
cos(−2x)

]
dx

=
1

2

∫
cos(8x)dx− 1

2

∫
cos(2x)dx

=
1

16
sin(8x)− 1

4
sin(2x) + c.

What about
∫

sin(x) cos(3x) cos(6x)dx? How would you attack such a problem?

Example 7.6.12. Here we use the adding angles identity for tangent followed by a u = cos(4x) substitution.∫
tan(x) + tan(3x)

1− tan(x) tan(3x)
dx =

∫
tan(4x)dx

=

∫
sin(4x)

cos(4x)
dx

=

∫
−du
4u

=
−1

4
ln | cos(4x)|+ c.

Finally, I would just comment that there are many integrations of the hyperbolic trigonometric functions
which follow arguments paralell to those given in this section.
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End of Chapter Problems

Problem 7.6.1. hope to add problems in the future..
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Chapter 8

applications of integral calculus

Broadly speaking, the infinitesimal method is the idea of formulating models at an infinitesimal level and then
using differentiation and/or integration to decide instantaneous rates of change or total amounts accumulated.
For the both the derivative and the integral the same pattern is seen as we transition from the finite model
to the continuous model: we replace ∆ with d to indicate finite changes becoming infinitesimal changes:

1. we replace the average rate of change vavg = ∆s
∆t with the instantaneous rate of change v = ds

dt . As
∆t→ 0 we have ∆t→ dt and correspondingly ∆s→ ds.

vavg =
∆s

∆t
−→−→−→−→−→−→ v =

ds

dt

2. as a finite sum of n items has n→∞ the pieces of the sum become smaller and smaller, ideally in the
limit each element in the sum is ”infinitesimal”.

An =

n∑
i=1

f(xi)∆x −→−→−→−→−→−→ A =

∫ b

a

f(x) dx

the integral is often called a continuous sum.

We have established the precise mathematical meaning of ds
dt and

∫ b
a
f(x) dx in previous chapters. We know

that the comments above speak to a conceptual process. A finite sum is not an integral and an average
rate of change is not an instantaneous rate of change. Often your first exposure to an application is at the
level of averages, for example v = s/t the speed is the distance over the time. But, this is too crude for all
but the most boring of physical examples so we insist that the basic quantity to study is v = ds/dt. We
replace the average quantities with corresponding infinitesimals and this results in a precise model for the
system. To make the continuum limit we ask what average laws should hold for infinitesimal quantities?
What is the logical way to set up the problem. Much of this chapter is about trying to answer these questions.

To begin we reexamine the net-change theorem in view of the conceptual clarity the infinitesimal method
offers. Infinitesimals provide a notation to quickly summarize a limiting process without need of even stating
the process. If you need to see the process I invite you to read the text.
In this chapter we return to the problem of calculating the area of some region. In contrast to signed area,
this will really be the area which is positive. We will find that infinitesimal arguments provide an efficient
shorthand for writing limiting processes. Almost every problem is begun by drawing a graph of the region
and a typical approximating rectangle. Then we find the net area by adding up all the infinitesimal areas.

297
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This ”adding up” is integration, we should think of integration as a continuous sum.

Once the area problem is settled we turn to the task of calculating the volumes of solids which possess a
certain regularity. If a solid is such that the cross-sectional area is of the same type at each value of the axis
perpendicular to the cross-section then we can add up the volume of each slice and get the total volume. For
example, a sphere has a cross-sections which are disks if we use a diameter as an axis. A tetrahedron has
triangular cross-sections relative to the axis which extends perpendicularly from one its faces to an opposing
vertex. A solid of revolution has cross-sections which are disks or washers relative to the axis of revolution.
Of course, you should look at the pictures in this chapter before you get too worried about the meaning of
this paragraph. Integration provides the technology needed to add together all the tiny volumes.

Finally, I issue a word of caution. Infinitesimals are not real numbers. They are merely a notation to indicate
a precise mathematical construction which we have spend months to develop with care. Remember this as
you use them.

8.1 a brief tour of infinitesimal methods

Concept: average concepts still hold true at the infinitesimal level. Integration then extends these micro-
scopic arguments to macroscopic rules. Often we can find a relation that holds true over an instant dt of
time or a little displacement dx etc...

Example 8.1.1. For example, the displacement for a particle moving with velocity v during a time dt is
simply the product of velocity and time; dy = vdt. This makes sense because the velocities v(t) and v(t+ dt)
are equal. To be more precise I should say they are equal in the limit that dt→ 0. During an instant of time
the velocity is constant so we can use the constant velocity formula.

dy = v dt ⇒
∫ y(t)

yo

ds =

∫ t

0

v(τ)dτ

⇒ y(t) = yo +

∫ t

0

v(τ)dτ.

We call y(t) the position at time t. The displacement during the time interval [0, t] is the net-change in
position; y(t)−yo. If we wanted to know the distance traveled then we need to do a different calculation since
neither the displacement nor the position reveal the distance traveled. Imagine a particle oscillating back and
forth 20 times. You could have a distance traveled much larger than the displacement. Distance traveled is
always positive, let’s denote distance by s:

ds = |v| dt ⇒
∫ s(t)

so

ds =

∫ t

0

|v(τ)|dτ

⇒ s(t) = so +

∫ t

0

|v(τ)|dτ.

The absolute value signs insure we are calculating distance rather than displacement, the absolute value of
the velocity is called the speed. Often I set so = 0. The acceleration a = dv

dt thus dv = a dt and we may
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obtain the velocity from integration the acceleration from time zero to time t,

dv = a dt ⇒
∫ v(t)

vo

dv =

∫ t

0

a(τ)dτ

⇒ v(t) = vo +

∫ t

0

a(τ)dτ.

We explore the meaning of the constructions in this example in depth in the physics course. It’s much more
fun once we have a few more dimensions to explore.
Suppose that a(t) = sin(t) for some object travelling in the x-direction such that the object is initially moving
right at 1m/s and has an initial position x = 3m. We can calculate the position, velocity, speed and distance
traveled by integration.

dv = sin(t) dt ⇒
∫ v(t)

1

dv =

∫ t

0

sin(τ)dτ

⇒ v(t)− 1 = − cos(τ)

∣∣∣∣t
0

⇒ v(t) = 2− cos(t) .

To calculate speed we simply take absolute value; speed = |v(t)| = |2− cos(t)|. Next, integrate the velocity to
find position,

dx = v dt ⇒
∫ x(t)

3

dx =

∫ t

0

(2− cos(τ))dτ

⇒ x(t)− 3 =

(
2τ − sin(τ)

)∣∣∣∣t
0

⇒ x(t) = 3 + 2t− sin(t).

Distance traveled is curiously equal to the displacement in this example since |v(t)| = v(t) (can you see why
I know the velocity is positive for this example?). If I had given an initial velocity of vo = 0.5m/s then the
speed would differ from the velocity. In invite the reader to rework this example for the case xo = 3 and
vo = 0.5.
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Remark 8.1.2.

Let me comment on the mathematics used in the preceding example. The net-change theorem states:∫ b

a

df

dx
dx = f(b)− f(a).

The technique of u-substitution tell us the same result: just substitute u = f to see,∫ b

a

df

dx
dx =

∫ f(b)

f(a)

df = f(b)− f(a).

Generically, if we have df
dx = g then we can solve to obtain df = g(x)dx. Then you can integrate

this, but to be fair we have to match the bounds to the variables:

df = g(x)dx ⇒
∫ f(b)

f(a)

df =

∫ b

a

g(x) dx

the bounds on the LHS and RHS should correspond in the way that the change of variables theorem
demands. These observations give us a new way to solve some of the problems we previously solved
by antidifferentiation followed by algebra to fit the ”c”. Integration from time zero to time t naturally
encodes initial conditions into the solution for time t. The downside is that to be careful we have to
take care not to confuse the time t with the dummy variable of integration τ .

Example 8.1.3. Another example is current I = dQ/dt. If we wish to calculate the net charge that has
flowed from time zero to time t then we simply integrate the current,

I =
dQ

dt
⇒ dQ = I dt

⇒
∫ Q(t)

Qo

dQ =

∫ t

0

I(τ)dτ

⇒ Q(t) = Qo +

∫ t

0

I(τ)dτ.

Example 8.1.4. This idea also applies to things which are not from some time-rate of change. For example,
the work done by a constant force F over a distance x is given by the formula W = Fx. Now this formula is
only for constant forces which act in the direction of the displacement. What would we do if the force was a
function of position? Then we could not just use the formula since the force is not constant. However, if we
look at F (x) and F (x+dx) then those forces are equal in the limit that dx→ 0. So we can conclude that the
simple work equation holds at the infinitesimal level; the work dW done by a force F (x) over a displacement
dx will be dW = F (x) dx. If the force does work from x = a to x = b then the net work done will be the sum
of all the infinitesimal works dW , in other words,

W =

∫
dW =

∫ b

a

F (x) dx.

For example, if we have the spring force then F (x) = kx for some constant k called the ”stiffness”,

W =

∫
dW =

∫ b

a

kx dx =
1

2
kb2 − 1

2
ka2.
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Example 8.1.5. Another application is hydrostatic force. The force on a dam is due to water pressure. The
definition of pressure is that it is force per unit area, this gives us

P =
F

A

Now this only makes sense so long as the same force is applied over the whole area. We cannot just apply
this equation to the force due to the water pressure on a dam. The pressure at the bottom of the dam is
larger than that at the top. In fact it is known that P = ρgy, it is proportional to the depth y. Different
depths give different pressures, hopefully this is a familiar fact to everyone. So, if we wish to calculate the
net-force due to pressure (this is called the ”hydrostatic force”) then we should consider horizontal strips of
area dA = l(y)dy where l(y) is the width of the dam at depth y. These will have the same pressure all along
them so the equation makes sense to apply to the strip, we have

P (y) = ρgy =
dF

dA

The little force dF is due to the pressure P (y) acting on dA. Then

dF = ρgydA = ρgyl(y)dy ⇒ F =

∫ y2

y1

ρgyl(y)dy

Generally the challenging part of these dam examples is finding the actual function for l as function of y.
The simplest example is a rectangular dam of constant width L and depth h

dF = ρgydA = ρgyLdy ⇒ F = ρgL

∫ h

0

ydy =
1

2
ρgLh2 = PmiddleLh.

Where Pmiddle = ρg h2 . Effectively, it is as if we had the total area of the dam A = Lh subject to the pressure
at the midpoint of the dam. For a triangular or semicircular dam the effective pressure might occur lower or
higher on the dam.

Example 8.1.6. What is the arclength of a curve y = f(x) for a ≤ x ≤ b? We cannot just calculate the
distance between (a, f(a)) and (b, f(b) since the curve is probably not a line. However, if we calculate the
little distance ds between (x, f(x)) and (x+ dx, f(x+ dx)) then it stands to reason we can approximate the
function with its tangent line so dy = f ′(x)dx and the distance formula yields:

ds =
√
dx2 + dy2 =

√
1 +

dy

dx

2

dx

Consider then y =
√
R2 − x2 for 0 ≤ x ≤ R. Calculate dy

dx = −x√
R2−x2

hence the arclenth of this curve is

found by integrating:

s =

∫ R

0

√
1 +

x2

R2 − x2
dx =

∫ R

0

R√
R2 − x2

dx =

∫ R

0

R√
1− ( xR )2

d( xR ) = R sin−1( xR )

∣∣∣∣R
0

=
πR

2
.

Notice that the curve we just considered has equation y2 = R2−x2 or x2 + y2 = R2. In fact, it was precisely
the quarter of the circle of radius R which is in quadrant I. To find the total arclenth of the circle we simply

multiply by 4; S = 2πR . With calculus we can derive the formula for the circumference of a circle.
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Example 8.1.7. What is the area of a circle of radius R? Notice we can cut a circle into a bunch of circular
strips. If the strip from radius r to r+dr has area dA then we can calculate that area from imagining taking
the strip and laying it straight to make a rectangular strip of width dr and length 2πr (using the last example).
Hence, dA = 2πr dr. We have to add up the area of each strip all the way from r = 0 up to r = R.

A =

∫
dA =

∫ R

0

2πr dr = πr2
∣∣R
0

= πR2.
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We can calculate the area of a circle without integral calculus. We just need trigonometry and a few basic
limit theorems:

I hope this selection of examples is enough for you to begin to appreciate the beauty of the infinitesimal
formalism. I wanted you to understand that the remainder of the chapter is useful beyond the problems of
area and volume. Similar thinking is needed to set-up a host of interesting applied problems.

Problems

Problem 8.1.1. hope to add problems in the future..
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.
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8.2 area

Example 8.2.1. .

The general strategy is to draw a picture to get a handle on the problem, then find the formula for the area
dA of a typical infinitesimal rectangle and then add all the little areas together by integrating.
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Example 8.2.2. .

Example 8.2.3. .
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Example 8.2.4. .
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Example 8.2.5. .

Example 8.2.6. .
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Example 8.2.7. .
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Example 8.2.8. .

Example 8.2.9. Find area bounded by x = 0, x = π/2, y = sin(x) and y = ex.
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Example 8.2.10. .
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Example 8.2.11. .
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Example 8.2.12. .
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Example 8.2.13. .

Problems

Problem 8.2.1. hope to add problems in the future..
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8.3 volume

Example 8.3.1. .

Example 8.3.2. .
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Example 8.3.3. .

Example 8.3.4. .
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Example 8.3.5. .
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Example 8.3.6. .
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Example 8.3.7. .
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Example 8.3.8. .
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Example 8.3.9. we calculate the volume by the method of washers.

Example 8.3.10. same as the previous example, but this time we calculate by the method of cylindrical
shells.
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Example 8.3.11. .

Example 8.3.12. Note, we also include the boundary y = 1,
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Example 8.3.13. .
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Example 8.3.14. .
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Example 8.3.15. .
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Example 8.3.16. .

Problems

Problem 8.3.1. hope to add problems in the future..
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End of Chapter Problems

Problem 8.3.2. hope to add problems in the future..
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.
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.
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