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Abstract

We study the algebra and calculus of polar coordinates. We find some curves are
most naturally described with polar coordinates. In particular, problems involving
sectors bounded by circular arcs are nicely described by polar coordinates. The calcu-
lation of geometric quantities in polar coordinates typically involve a significant twist
from the more direct Cartesian coordinate approach. We review the concept of para-
metric curves once more, this is a review of a previous article, but I left it here since
it might be helpful to read a different motivational discussion of why we parametrize
curves. Next conic sections are described both via their geometric definition and by
the more convenient algebraic characterization which we use in calculus applications.
We also indicate a number of natural parametrizations of conic sections. We also ex-
plaining how conic sections can be formulated in polar coordinates. If we combine the
parametric and polar concepts then we may study polar-parametric parametrizations
of curves. Finally, I should mention, the discussion of polar coordinates is standard
material, but you may naturally be curious about the existence and potential use of
other coordinate systems. Time permitting, I may discuss rotated coordinate systems
or why hyperbolic coordinates are troublesome.

1 Polar Coordinates

Cartesian coordinates x, y are related to polar coordinates r, θ by

x = r cos θ, y = r sin θ.

These formulas follow naturally from basic trigonometry:
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Notice x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2(cos2 θ + sin2 θ) = r2. Furthermore, if x ̸= 0 we
also find y

x
= r sin θ

r sin θ
. We should remember:

r2 = x2 + y2 &
y

x
= tan θ.

In graphing polar equations we typically allow r < 0 with the understanding that geometri-
cally this indicates the point in question is on the diametrically opposite side. Notice

cos(θ + π) = cos θ cosπ − sin θ sin π = − cos θ

sin(θ + π) = sin θ cosπ + cos θ sin π = − sin θ.

Consequently,

x = r cos(θ + π) = −r cos θ & y = r sin(θ + π) = −r sin θ.

Apparently we can identify a given point P either with polar coordinates (r, θ + π) or polar
coordinates (−r, θ). Polar coordinates are also degenerate in the choice of θ for fixed r since:

x = r cos(θ + 2πn) = r cos θ & y = r sin(θ + 2πn) = r sin θ.

for any n ∈ Z. We are free to shift θ by any multiple of 2π-radians. In terms of degree-
measure, we can shift the angle by any multiple of 360o. Let me pause to give an account
of how to calculate the polar angle in different cases: we assume that r =

√
x2 + y2 > 0 in

what follows1:

(1.) If x > 0 then θ = tan−1(y/x) ∈ (−π/2, π/2)

(2.) If x = 0 and y > 0 then θ = π/2

(3.) If x = 0 and y < 0 then θ = −π/2 or

(4.) If x < 0 then θ = tan−1(y/x) + π ∈ (π/2, 3π/2)

All of this said, I often simply calculate the angle in a triangle in the quadrant where the
point is found and simply add or substract radians as geometric common sense indicates. If
you are given instructions to find θ ∈ (−π, π] then you would need to adjust the answers
given above, in particular case (4.) splits into two cases.

Example 1.1. Let P = (3, 3) then r =
√
18 and θ = tan−1(3/3) = π/4.

Example 1.2. Let Q = (1,−1) then r =
√
2 and θ = tan−1(−1/1) + π = 3π/4.

Example 1.3. Let R = (−2,−2) then r =
√
8 and θ = tan−1(−2/− 2) + π = 5π/4.

Example 1.4. Let S = (4,−4) then r =
√
32 and θ = tan−1(−4/4) = −π/4.

Notice P,Q,R, S in the preceding examples are respectively in Quadrants I, II, III and IV.
And now for some r < 0 examples. Ok, actually, the same examples as above, just with the
silly choice to write r = −

√
x2 + y2:

Example 1.5. Let P = (3, 3) if we set r = −
√
18 then θ = 5π/4.

Example 1.6. Let Q = (1,−1) if we use r = −
√
2 then θ = 3π/4.

1the polar angle at the origin where r = 0 is undefined



Example 1.7. Let R = (−2,−2) if we set r = −
√
8 and θ = π/4.

Example 1.8. Let S = (4,−4) if we use r = −
√
32 and θ = tan−1(−4/4) = 3π/4.

Next, I turn to the problem of converting equations to and from polar to Cartesian co-
ordinates. In short, apply the boxed equations at the start of this section. In Cartesian
coordinates, it is often customary to solve for y = f(x) as to identify the curve as the graph
of a function. The analog for polar coordinates it to solve for r = f(θ) where possible. If
r = f(θ) describes C then we call C a polar graph.

Example 1.9. Express x2 + y2 = 9 as a polar graph. So, r2 = 9 and thus r = 3. This curve
is the circle of radius 3 centered at the origin.

Technically, we could also write r = −3 for the preceding example, but let us agree to avoid
using r < 0 in as much as is possible.

Example 1.10. Consider r = 2 cos θ. Find the form of this curve in Cartesian coordinates.
Observe r = 2 cos θ implies r2 = 2r cos θ which yields x2 + y2 = 2x. Hence x2 − 2x+ y2 = 0
and completing the square reveals

(x− 1)2 + y2 = 1

this is a circle centered at (1, 0) with raduis R = 1.

Example 1.11. Consider the circle of radius R centered at (h, k) has equation

(x− h)2 + (y − k)2 = R2.

The form of this equation in polar coordinates is:

(r cos θ − h)2 + (r sin θ − k)2 = R2.

Multiplying out the squares above and using cos2 θ + sin2 θ = 1 gives:

r2 − 2r(h cos θ + k sin θ) + h2 + k2 = R2

Interesting, the equation above is quadratic in r, let us solve it by completing the square:

(r − (h cos θ + k sin θ))2 − (h cos θ + k sin θ)2 = R2 − h2 − k2

thus

(r − (h cos θ + k sin θ))2 − h2 cos2 θ − 2hk sin θ cos θ − k2 sin2 θ = R2 − h2 − k2

and

(r − (h cos θ + k sin θ))2 = R2 − h2(1− cos2 θ)− k2(1− sin2 θ) + 2hk sin θ cos θ

which becomes

(r − (h cos θ + k sin θ))2 = R2 − (h2 sin2 θ − 2hk sin θ cos θ + k2 cos2 θ)

or
(r − (h cos θ + k sin θ))2 = R2 − (h sin θ − k cos θ)2

curious:
r = h cos θ + k sin θ ±

√
R2 − (h sin θ − k cos θ)2.

Well, that was fun. Let’s try this formula out on something we already did: (x−1)2+y2 = 1
has h = 1, k = 0 and R = 1 thus:

r = cos θ ±
√

1− sin2 θ = 2 cos θ.



The example above is not intended as result to memorize. However, the calculational prin-
ciples have broad application.

Example 1.12. Consider x2 − y2 = 1. The polar form of this hyperbola is found by subsi-
tuting x = r cos θ and y = r sin θ into the equation:

(r cos θ)2 − (r sin θ)2 = 1 ⇒ r =
±1√

cos2 θ − sin2 θ
=

±1√
cos 2θ

If we replace θ with θ − π/4 then this amounts to rotating the given graph by π/4. Let us
examine how such a rotation plays out in going from the preceding example to the example
given next:

Example 1.13. Consider r = ±1√
cos(2(θ−π/4))

= ±1√
cos(2θ−π/2)

. Notice,

cos
(
2θ − π

2

)
= sin(2θ) =

1

2
sin θ cos θ.

Squaring the given equation gives:

r2 =
1

cos(2(θ − π/4))
=

2

sin θ cos θ
.

Thus r2 sin θ cos θ = 2. Recall r sin θ = y and r cos θ = x thus we find yx = 2. Note y = 2
x
is

a hyperbola.

Example 1.14. Consider y = mx+ b where m, b are constants. To find the polar equation
of the given line we substitute x = r cos θ and y = r sin θ to obtain:

r sin θ = mr cos θ + b

If b ̸= 0 then we can express a line as a polar graph:

r =
b

m cos θ + sin θ
.

If b = 0 then the equation of a line in polar coordinates is given by a pair of rays. For
example, y = x is given by θ = π/4 and θ = 5π/4.

Notice θ = θo for a given constant θo describes a ray based at the origin.

1.1 Plotting Polar Graphs

Given r = f(θ) we can graph the curve in the xy-plane by the following technique:

(i.) graph r = f(θ) in the θr-plane,

(ii.) plot the curve in the xy-plane using reference rays corresponding to impor-
tant features in the θr-graph.

I will attempt to convey the concept outlined above in these notes, but I think this is better
communicated in lecture where we draw the pictures step-by-step.



Example 1.15. Color indicates which part of the r = sin(3θ) graph corresponds to each
petal. Each node of the graph of the sine function corresponds to a petal. It turns out that
studying 0 ≤ θ ≤ π suffices to cover the whole graph. If we extend θ further then we duplicate
what is already shown.

Example 1.16. Consider r = sin(eθ) for 0 ≤ θ ≤ 6π/e and then for 0 ≤ θ ≤ 150π/e.

If I extended the domain of θ further the graph of this equation is dense on the unit-disk.
The polar graph never returns to the same point in the same fashion. You can contrast this
with r = sin(3θ) which closes back on itself after once we extend θ over π-radians.

Example 1.17. The graph of r = θ for −5π/2 ≤ θ ≤ 5π/2 is pictured below. I broke the
negative angle and postive angle cases into separate graphs in the interest of appreciating
how negative r is graphed in contrast to postive r:



Example 1.18. Let’s graph r = cos(2θ). Once more I use color coding to indicate the part
of the graph in the xy-plane which corresponds to the graph of r = cos(2θ) in the θr-plane:

Example 1.19. Let’s graph r = 2 + cos(2θ). Once more I use color coding to indicate
the part of the graph in the xy-plane which corresponds to the graph of r = cos(2θ) in the
θr-plane. I also put θ = ±π/4,±3π/4 as dotted-purple lines to help follow the cases.

Example 1.20. Let’s graph r = −1 + 2 cos(2θ). Once more I use color coding to indicate
the part of the graph in the xy-plane which corresponds to the graph of r = −1 + 2 cos(2θ)
in the θr-plane. I also included θ = ±π/6 and θ = 5π/6 and θ = 7π/6 as dotted-purple lines
to help track the geometric boundaries of each of the 4 petals seen in the graph below:

Example 1.21. Let’s graph r = θ sin(θ). Once more I use color coding to indicate the part
of the graph in the xy-plane which corresponds to the graph of r = θ sin(θ) in the θr-plane:



2 Calculus in Polar Coordinates

Our goal in this section is to explain how formulas of calculus we know in Cartesian terms
must be modified when our curve or region is described using polar coordinates.

2.1 arclength

If x = r cos θ and y = r sin θ where r, θ are both functions of time t then you are asked to
show in a homework that(

ds

dt

)2

=

(
dx

dt

)2

+

(
dy

dt

)2

=

(
dr

dt

)2

+ r2
(
dθ

dt

)2

If we set t = θ then we derive the following special formula for a polar graph r = r(θ),

ds =

√
r2 +

(
dr

dθ

)2

dθ

Example 2.1. Calculate the length of the polar graph r = R where 0 ≤ θ ≤ 2π. Notice
dr
dθ

= 0 and ds = Rdθ thus s =
∫ 2π

0
Rdθ = 2πR. This is not surprising.

Example 2.2. Calculate the length of the spiral r = θ where 0 ≤ θ ≤ 4π. Calculate,

ds =

√
r2 +

(
dr

dθ

)2

dθ =
√
θ2 + 1 dθ

If we make a sinh t = θ substitution then θ2 + 1 = sinh2 t + 1 = cosh2 t and dθ = cosh t dt.
Note sinh(0) = 0 and sinh(sinh−1(4π)) = 4π thus:

s =

∫ 4π

0

√
θ2 + 1dθ =

∫ sinh−1(4π)

0

cosh2(t) dt =
1

2

∫ sinh−1(4π)

0

(1 + cosh(2t)) dt

Thus s = 1
2
sinh−1(4π) + 1

4
sinh(2 sinh−1(4π)) ≊ 80.82. The second term could be further

simplified using sinh 2t = 2 cosh t sinh t.

Example 2.3. A polar parametric curve is defined by giving both r and θ as functions
of a parameter. For instance, r = t and θ = sin t for 0 ≤ t ≤ 2π defines such a curve. To
calculate its arclength we use the following approach:

ds =

√(
dr

dt

)2

+ r2
(
dθ

dt

)2

dt =
√
1 + t2 cos2 t dt

Numerical integration yields s =
∫ 2π

0

√
1 + t2 cos2 tdt ≊ 15.0131. The graph of this can be

plotted as follows. I used the direct parametrization r⃗(t) = ⟨t cos(sin t), t sin(sin t)⟩ to make
the plot in Desmos: (for the blue graph I used 0 ≤ t ≤ 10π)



I hope the examples above suffice to illustrate how we may calculate arclength for curves
described with polar coordinates.

2.2 tangent lines

Next, we turn to the problem of finding the slope of a tangent line. If we suppose r = r(t)
and θ = θ(t) describe a polar parametrized curve then x = r cos θ and y = r sin θ indicate
the parametrization of the curve in Cartesian coordinates is simply:

r⃗(t) = ⟨x(t), y(t)⟩ = ⟨r(t) cos θ(t), r(t) sin θ(t)⟩

where I have made the t-dependence explicit as to emphasize why calculating the velocity
necessarily requires product-rules:

v⃗ =
dr⃗

dt
=

〈
cos θ

dr

dt
− r sin θ

dθ

dt
, sin θ

dr

dt
+ r cos θ

dθ

dt

〉
The formula above can be used to find the direction of the tangent line at a given point
on a polar parametrized curve. Furthermore, since, dx

dt
= cos θ dr

dt
− r sin θ dθ

dt
whereas dy

dt
=

sin θ dr
dt

+ r cos θ dθ
dt

we could calculate the slope of the tangent line to a polar parametrized
curve for such t that dx

dt
̸= 0 via

dy

dx
=

dy
dt
dx
dt

=
sin θ dr

dt
+ r cos θ dθ

dt

cos θ dr
dt
− r sin θ dθ

dt

.

Example 2.4. Polar graphs use t = θ in which case:

v⃗ =

〈
cos θ

dr

dθ
− r sin θ, sin θ

dr

dθ
+ r cos θ

〉
&

dy

dx
=

sin θ dr
dθ

+ r cos θ

cos θ dr
dθ

− r sin θ
.

For r = θ2 we find:
dy

dx
=

2θ sin θ + θ2 cos θ

2θ cos θ − θ2 sin θ

The tangent line to this curve when θ = π/2 has

dy

dx
=

π sin(π/2) + (π/2)2 cos(π/2)

π cos(π/2)− (π/2)2 sin(π/2)
=

π

−(π/2)2
= − 4

π
.

The point on the curve which corresponds to θ = π/2 has x = (π/2)2 cos(π/2) = 0 and
y = (π/2)2 sin(π/2) = π2/4. Thus the equation of the tangent line is:

y =
π2

4
− 4

π
x



2.3 area

In polar coordinates if a region R can be characterized by the inequalities rin(θ) ≤ r ≤ rout(θ)
for θ1 ≤ θ ≤ θ2 then the area of R can be calculated by the following integral:

area(R) =

∫ θ2

θ1

1

2
(r2in − r2out)dθ.

This integral follows naturally from the formula for the area of a sector which sweeps △θ-
radians with inner radius rin and outside radius rout; △A = 1

2
(r2out − r2in)△θ. For a region as

described above we can divide the area into a fan of n equal-angle sectors and as n → ∞ we
find △θ → 0 and the summation can be identified as the Riemann sum of the integral given
above. I’ll probably draw a supporting picture in lecture.

Example 2.5. Find area of R which is bounded by r = θ2 and the x-axis where 0 ≤ θ ≤ π.
Calculate:

area(R) =

∫ π

0

1

2
θ2 dθ =

π3

6
.

Example 2.6. Find area bounded outside r = 1 and inside r = 2 sin(3θ) in Quadrant I.

Notice the polar graphs intersect where 1 = 2 sin(3θ) which suggest sin(3θ) = 1
2
which has

solutions 3θ = π
6
and 3θ = 5π

6
yielding θ = π

18
and θ = 5π

18
. These are the only solutions with

0 < θ < π/2 as is required for Quadrant I. Calculate:

area =

∫ 5π/18

π/18

1

2

(
4 sin2(3θ)− 1

)
dθ

=

∫ 5π/18

π/18

(
2 sin2(3θ)− 1

2

)
dθ

=

∫ 5π/18

π/18

(
1

2
− cos(6θ)

)
dθ

=

(
θ

2
− 1

6
sin(6θ)

) ∣∣∣∣5π/18
π/18

=

(
5π

36
− 1

6
sin

(
5π

3

))
−
(

π

36
− 1

6
sin

(π
3

))
=

4π

36
+

1

6

√
3

2
+

1

6

√
3

2

=
π

9
+

√
3

6

I will likely work additional examples in lecture.



3 Parametric Equations for Curves

What is dimension ? We live in a world of three spatial dimensions. If we fix an origin
then from that reference point we can measure length, width and height to which we assign
(x, y, z) ∈ R3. Three dimensional space is three-dimensional because it takes three indepen-
dent real numbers to fix a point in space. Similarly, the xy-plane, or this sheet of paper (or
screen) is two-dimensional as a point in the page is uniquely fixed by a pair of real parame-
ters. The number of independent parameters of a space tells us its dimension.

It’s hard to imagine more than three spatial dimensions2. However, you can face more
than three dimensions in real world mechanical problems. The robot arm pictured below is
controlled by motors which allow the track to move to position x and the arm to articulate
according to the angles α, β, γ. The configuration space for this system is four dimensional.
think: for a more complicated robot the configuration space could have very high dimension.

Now that we have some idea about dimension. Let’s turn our attention to curves:

A curve is a one-dimensional object

In other words, each point on a curve can be described by a single real parameter. Another
word that is helpful is intrinsic; a curve has an intrinsic dimension of one.

Example 3.1. One direction of a highway can use mile-markers as a parameter. If you tell
someone which mile-marker you are at then they know where you are on the highway.

We make no assumption that this choice of parameter is unique. We can talk about a curve
in the plane, or a curve in three-dimensional space, or even a curve in spacetime3. However,
for the remainder of this talk I will focus our attention on curves in the xy-plane.

Definition 3.2. A path in R2 is a pair of functions g1 : I → R and g2 : I → R where
I ⊆ R is the domain of the path. The set {(g1(t), g2(t)) |t ∈ I} is called the trace of the
path. If a curve C in R2 is the trace of a path then that path is called a parametrization
of the curve. We also say that x = g1(t) and y = g2(t) are parametric equations for C. 4

We have two main goals in the remainder of this section:

(i.) for a given path, decide if it is the parametrization of a known curve

(ii.) for a known curve, find a suitable parametrization.

2although, time as the fourth dimension is a basic idea of modern relativistic physics
3also known as a worldline
4I should caution, there is not universal agreement on terminology. Often it is assumed that g1, g2 are

continuous, and worse yet the term path and curve are often used interchangably.



The goals above beg an obvious question: what curves do we know ? Before I answer that
question let us examine a mystery curve. Let’s see if we can cipher its true identity.

Example 3.3. Consider the path given by

{
x = t+ 2
y = t2

}
for −4 ≤ t ≤ 4. We can study

the path by plotting some points:

t x = t+ 2 y = t2

−4 −2 16
−3 −1 9
−2 0 4
−1 1 1
0 2 0
1 3 1
2 4 4
3 5 9
4 6 16

You probably can see this is a parabola. We can see this by algebra: eliminate t by noting
t = x− 2 thus y = t2 = (x− 2)2. Indeed, y = (x− 2)2 describes a parabola with vertex (2, 0).

We can think about graphs of functions of the Cartesian variable x5.

Definition 3.4. If f is a function of x then graph(f) = {(x, f(x)) | x ∈ dom(f)}.

The graph y = f(x) must pass the vertical line test; each vertical line in R2 intersects
graph(f) at most once. Graphs are simple to parametrize.

Example 3.5. The graph y = f(x) is nicely parametrized by using x = t. Observe{
x = t

y = f(t)

}
for t ∈ dom(f) parametrizes graph(f).

Example 3.6. If f(x) = x cos(x) then x = t and y = t cos(t) for −∞ < t < ∞ parametrizes
graph(f). I’ve assumed that f is given the natural domain for the given the formula for f(x).

Line segments can be vertical so it may be impossible to look at a given line-segment as the
graph of f(x). In contrast, it is always possible to parametrize a line segment.

Example 3.7. Let P = (p1, p2) and Q = (q1, q2) be a pair of points in the plane. Then

x = p1 + t(q1 − p1), y = p2 + t(q2 − p2)

for 0 ≤ t ≤ 1 parametrizes the line-segment from P to Q. For instance, if P = (3, 5) and
Q = (3, 8) then

x = 3, & y = 5 + 3t

for 0 ≤ t ≤ 1 parametrize the line segment from P to Q.

5admittedly, we could also think about graph(g) = {(g(y), y) | y ∈ dom(g)} if we were given a g as a
function of y. That sort of graph would have to pass the horizontal line test. I decided to let you talk to me
about this in office hours if you’re interested



Intuitively, one of the advantages of the parametric viewpoint is it treats x and y on an equal
footing. There is no vertical line test for parametrized curves. A parametrized curves allow
much creativity.

Example 3.8. We define x = 1
3
sin(t2) and y = t for −4 ≤ t ≤ 4 and x = 1 + cos(t) and

y = sin t for 4 ≤ t ≤ 4 + 2π. Here’s a picture of this path:

To be fair, solution sets to equations also allow nearly limitless possibility. I made an octopus
of sorts if you use your imagination:

Example 3.9. The solution set of the equation (3x − sin(y2))((x − 1)2 + y2 − 1) = 0 as
plotted by Wolfram Alpha is:

The idea of building curves is fairly simple; for parametric curves I merely splice things
together when convenient. In contrast, to combine solution sets we can simply multiply
the defining equations. To be clear, what follows is probably more important than my
octo-construction shannigans on this page.

Remark 3.10. Wolfram Alpha and other such software cannot be universally trusted for
complicated graphs or analysis. It is a tool which must be used responsibily. One of our goals
in calculus is gaining intuition for when machines are lying. The more you know the easier
it is to see computer failure.

https://www.wolframalpha.com


4 Conic Sections

I created this picture with the Tikz package in LATEX. Thanks to Mark Wibrow for posting
code which I found at this website. The idea of the picture is that we create parabolas,
circles and hyperbolas by taking particular slices of the double-cone. It is also possible to
hit just the point where the cones meet to get a single point. Furthermore, if you take a
vertical plane you can obtain a pair of lines as a cross-section of the cone. The point and
line cases are known as degnerate conics.

Parabola

Circle
Hyperbola

A second-degree quadratic equation in x, y has the general form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

It turns out that the solution to the above equation is a conic section (possibly degenerate)
and so it is convenient to provide the following algebraic definitions for a conic section:

Definition 4.1. Given constants A,B,C,D,E, F the solution set of

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

is a conic section. We say the conic section is degenerate if it is a line or a point.

In this section I focus on how we graph and parametrize an ellipse or a hyperbola.

4.1 Short Ellipse

Given a ≥ b and c =
√
a2 − b2, solutions of

x2

a2
+

y2

b2
= 1 form an ellipse.

⋄ center of ellipse is at (0, 0) and foci are at (−c, 0) and (c, 0)

https://tex.stackexchange.com/questions/344422/3d-form-will-be-how-to-draw-this-picture


⋄ major axis connects the major vertices (−a, 0) and (a, 0) on the x-axis

⋄ minor axis connects the minor vertices (0,−b) and (0, b) on the y-axis

Concerning the Geometric Definition: ellipse is defined as the collection of points for
which the sum of the distance from the focal points is a fixed constant. For this ellipse that
means the point (x, y) is on the ellipse if√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a.

Algebra6 reveals that the above is equivalent to the beautiful
x2

a2
+

y2

b2
= 1.

4.2 Tall Ellipse

Given a ≥ b and c =
√
a2 − b2, the solution set of

y2

a2
+

x2

b2
= 1 is an ellipse.

⋄ center of ellipse is at (0, 0), focal points7 are at (0,−c) and (0, c)

⋄ major axis connects the major vertices (0,−a) and (0, a) on the y-axis

⋄ minor axis connects the minor vertices (−b, 0) to (b, 0) on the x-axis

Concerning the Geometric Definition: ellipse is defined as the collection of points for
which the sum of the distance from the focal points is a fixed constant. For this ellipse that
means the point (x, y) is on the ellipse if√

x2 + (y + c)2 +
√

x2 + (y − c)2 = 2a.

Algebra8 reveals that the above is equivalent to the beautiful equation
y2

a2
+

x2

b2
= 1.

6There is much more to learn than I share here. Please see the Conic Sections: Visualization and
Derivation powerpoint if you are interested in the details of the geometric derivations I mention in this
section

7fine, fine, foci if you insist
8yes, you could simply derive the results here by interchanging x and y in the previous subsection



4.3 Parametrization of Ellipse

The reason we insisted that a > b in the previous two subsections was to simplify the
discussion of focal points. Now that we are past that it is convenient to explain the form
is of an ellipse centered at (h, k). Generally, if we have a particular curve centered at (0, 0)
then we may shift it to (h, k) by replacing x with x − h and y with y − k in the formulas
which desribe the curve.

Definition 4.2. Ellipse centered at (h, k) paralell to the coordinate axes: given
A,B > 0 the ellipse centered at (h, k) is the solution set of

(x− h)2

A2
+

(y − k)2

B2
= 1

If A > B then the ellipse has a horizontal major axis. If B > A then the ellipse has a
vertical major axis. If A = B then the ellipse is a circle and we say R = A is the radius
of the circle.

To parametrize the ellipse we need to find functions g1(t) and g2(t) such that when we set
x = g1(t) and y = g2(t) we solve the equation which defines the ellipse. My intuition is that
cos2 t + sin2 t = 1 gives us hope since it resembles the ellipse equation. In particular, the
pattern I match is just what I indicate below:

(x− h)2

A2︸ ︷︷ ︸
cos2 t

+
(y − k)2

B2︸ ︷︷ ︸
sin2 t

= 1

This suggests we set x−h
A

= cos t and y−k
B

= sin t. Therefore, let us set:

x = h+ A cos t & y = k +B sin t for 0 ≤ t ≤ 2π.

You can check, if you plug the above parametric equations into the expression (x−h)2

A2 + (y−k)2

B2

then the result is 1. In other words, our formulas serve to parametrize the ellipse. In fact,
they give a CCW9 parameterization of the ellipse. Geometrically the parameter t is like
the standard angle from polar coordinates. However, to be careful, it is only the standard
angle in the special case that A = B. Otherwise, if look at the intersection of the ellipse
with the ray θ = to you will not usually obtain the point mapped to by to. For example,
the graph below illustrates my comment for x2/9 + y2/25 = 1 parametrized by x = 3 cos t
and y = 5 sin t. You can see at t = π/4 the blue dot is where the parametrization maps to
whereas the green dot is at standard angle π/4.

9this is an abbreviation for Counter Clock Wise which refers to going opposite the standard motion of
old-fashioned analog clocks. In contrast, CW means Clock Wise, as in the same way a clock goes.



I should point out we can modify our formulas above as follows:

⋄ let

{
x = h+ A cos(ωt)
y = k +B sin(ωt)

}
for 0 ≤ t ≤ 2π and appropriate ω.

⋄ set ω = 1 for CCW motion, or ω = −1 for CW motion to cover the ellipse. The domain
0 ≤ t ≤ 2π can be modified to cover less or more of the ellipse as needed.

Example 4.3. To CW parametrize
x2

9
+

y2

25
= 1 simply set x = 3 cos t and y = −5 sin t for

0 ≤ t ≤ 2π.

Example 4.4. To CCW parametrize
x2

25
+

y2

9
= 1 simply set x = 5 cos t and y = 3 sin t for

0 ≤ t ≤ 2π.

Example 4.5. Parametrize the top-half of x2 − 6x + 4y2 − 8y = 3 in the CCW sense.
By algebra of completing the square, (x − 3)2 + 4(y − 1)2 = 3 + 9 + 4 = 16. Therefore,
(x− 3)2

16
+

(y − 1)2

4
= 1. hence we set x = 3 + 4 cos t and y = 1 + 2 sin t. We select the

top-half by limiting the parameter to 0 ≤ t ≤ π.

Example 4.6. Parametrize the left half of x2+y2−6y = 7 in a CCW direction. By algebra,
x2+(y−3)2 = 16. Identify the curve is a circle of radius 4 centered at (0, 3). The left half of
the circle begins at (0, 7) and ends at (0,−1). We parametrize this half-circle by x = 4 cos t
and y = 3 + 4 sin t for π/2 ≤ t ≤ 3π/2.



4.4 Horizontal Hyperbolas

Given nonzero a, b, the solution set of
x2

a2
− y2

b2
= 1 is a horizontal hyperbola.

.

⋄ with foci on the x-axis at (c, 0) and (−c, 0)

⋄ slant-asyptotes at y = ± b
a
x

⋄ transverse or conjugate y-axis which the hyperbola does not cross

⋄ the box drawn using y = ±b and x = ±a allows us to graph the asymptotes with ease.

Concerning the Geometric Definition: hyperbola is defined as the collection of points
for which the difference of the distances from a pair of focal points is a fixed constant. For
this hyperbola that means the point (x, y) is on the right branch of the hyperbola if√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = 2a.

Similarly, (x, y) is on the left branch of the hyperbola if√
(x− c)2 + y2 −

√
(x+ c)2 + y2 = 2a.

Isolating and eliminating the radicals in the right or left branch equations bring us to the

beautiful standard form
x2

a2
− y2

b2
= 1 for the hyperbola where b is defined by b =

√
c2 − a2.



4.5 Vertically Opening Hyperbolas:

Given nonzero a, b the solution set of
y2

a2
− x2

b2
= 1 is a vertical hyperbola

⋄ is a hyperbola with foci on the y-axis and asymptotes y = ±a
b
x

.

⋄ with foci on the y-axis at (0, c) and (0,−c)

⋄ slant-asyptotes at y = ±a
b
x

⋄ transverse or conjugate x-axis which the hyperbola does not cross

⋄ the box drawn using y = ±b and x = ±a allows us to graph the asymptotes with
ease.

Concerning the Geometric Definition: hyperbola is defined as the collection of
points for which the difference of the distances from a pair of focal points is a fixed
constant. For this hyperbola that means the point (x, y) is on the upper branch of
the hyperbola if √

x2 + (y + c)2 −
√

x2 + (y − c)2 = 2a.

Similarly, (x, y) is on the lower branch of the hyperbola if√
x2 + (y − c)2 −

√
x2 + (y + c)2 = 2a.

Isolating and eliminating the radicals in the right or left branch equations bring us to

the standard form
x2

a2
− y2

b2
= 1 for the hyperbola where b is defined by b =

√
c2 − a2.

4.6 Rotated Conic Sections

A second-degree quadratic equation in x, y has the general form:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

The solution to the above equation is a conic section, possibly degenerate. We have seen this
in some detail for examples where the Bxy term is missing. It turns out that it is always



possible to remove the cross-term by rotating coordinates. That is, there exists a coordinate
system for the plane such that the above equation is modified to

A′x′2 + C ′y′2 +D′x′ + E ′y′ + F ′ = 0

You can read more about this in Chapter 12 of Howard Anton’s Calculus. He explains how
to find the rotated coordinate system at the level of your current course. I will be content
to share the following to illustrate the claim:

4.7 Parametrization of Hyperbolas

Let me begin by forging a general, algebraically convenient, definition:

Definition 4.7. Hyperbola centered at (h, k) paralell to the coordinate axes:
given A,B > 0 the ellipse centered at (h, k) is the solution set of

(x− h)2

A2
− (y − k)2

B2
= ε

for ε = ±1. In particular, if ε = −1 then the hyperbola opens vertically . If ε = 1 then the
ellipse opens horizontally. The lines y = k ± B

A
(x− h) are asymptotes of the hyperbola.

Focus on the ε = 1 case. To parametrize the hyperbola we need to find functions g1(t)
and g2(t) such that when we set x = g1(t) and y = g2(t) we solve the equation which defines
the horizontal hyperbola. For the ellipse, the fact that cos2 t+ sin2 t = 1 served us well. Let
us suppose there are hyperbolic analogs of sine and cosine called hyperbolic sine (sinh)
and hyperbolic cosine (cosh). We would like for these functions to solve the identity

cosh2 t− sinh2 t = 1

since if they did it would be really really nice for the calculation below.

(x− h)2

A2︸ ︷︷ ︸
cosh2 t

− (y − k)2

B2︸ ︷︷ ︸
sinh2 t

= 1

This suggests we set x−h
A

= cosh t and y−k
B

= sinh t. Therefore, let us set:

x = h+ A cosh t & y = k +B sinh t for −∞ < t < ∞.



We’ll see that cosh t ≥ 1 in the next section hence the formula above has x ≥ h + A. In
orther words, the above merely parametrizes the right- branch of the hyperbola. To cover
the left-branch we use

x = h− A cosh t & y = k +B sinh t for −∞ < t < ∞.

If you can set aside disbelief just a little longer, we can cover the case k = −1 be almost the
same arguments. For the vertical hyperbola the upper- branch is parametrized by:

x = h+ A sinh t & y = k +B cosh t for −∞ < t < ∞.

whereas the lower-branch is covered by

x = h+ A sinh t & y = k −B cosh t for −∞ < t < ∞.

Example 4.8. Parametrize x2 + 2x− y2 = 0 for x ≥ 0. Notice (x+ 1)2 − y2 = 1 thus (0, 0)
is the vertex of the right-branch of this horizontal hyperbola. Therefore, set x = −1 + cosh t
and y = sinh t for t ∈ R.

It remains to define cosh and sinh. See the next section for details.

5 Review of Hyperbolic Functions

Just in case you missed it. Here is a quick review of the basics of hyperbolic functions.

Let us begin with a rather bizarre step; if f has a domain for which x ∈ dom(f) implies
−x ∈ dom(f) then we have the following identity by adding zero

f(x) =
1

2

(
f(x) + f(−x)

)
+

1

2

(
f(x)− f(−x)

)
you can check that the function 1

2

(
f(x)+f(−x)

)
is even whereas the function 1

2

(
f(x)−f(−x)

)
is odd. In other words, the identity above shows that any function with a domain symmetric
about the origin may be decomposed into the sum of an even and odd function. When we
apply this general fact to the exponential function we find the hyperbolic functions.

Definition 5.1. Let cosh(x) = 1
2
(ex + e−x) and sinh(x) = 1

2
(ex − e−x). We say cosh is the

hyperbolic cosine whereas sinh is the hyperbolic sine.

In many ways cosh and sinh behave just as do cos and sin. For example,

cosh(0) =
1

2
(e0 + e−0) = 1

and

sinh(0) =
1

2
(e0 − e−0) = 0.

We also note cosh(−x) = coshx and sinh(−x) = − sinhx. Therefore, by their definition
and an algebra step, ex = coshx+ sinhx and e−x = cosh(−x) + sinh(−x) = cosh x− sinhx.
Therefore,

1 = exe−1 = (coshx+ sinhx)(coshx− sinhx) = cosh2 x− sinh2 x.



We have shown cosh2 x− sinh2 x = 1 for all real x. These new hyperbolic functions will work
nicely to parametrize hyperbolas according to the arguments of the previous section.

Let me share a few basic facts about the hyperbolic functions. I want you to know the
theoretical minimum to understand how these functions behave.

Theorem 5.2.
d

dx
coshx = sinhx &

d

dx
sinhx = coshx

Proof: exercise for the reader ,.

Furthermore, since ex > 0 for all x ∈ R and coshx = 1
2
(ex+ e−x) it is immediately clear that

coshx > 0. Therefore, sinhx gives an increasing function everywhere. Since sinh(0) = 0 and
hyperbolic sine has no critical points we find sinh(x) < 0 whenever x < 0 and sinh(x) > 0
whenever x > 0. In contrast, since d

dx
coshx = sinhx, it follows hyperbolic cosine decreases

for x < 0 and then increases when x > 0. I usually tell students hyperbolic sine is sort of like
a cubic whereas hyperbolic cosine is at a glance a upward opening parabola with y-intercept
1. This is not really accurate since the hyperbolic functions have exponential growth or
decay for both x → ∞ and x → −∞. I’ll summarize our findings with a picture:

.

The next definition should not be too surprising:

Definition 5.3. Let tanh(x) = sinhx
coshx

. We say tanh is the hyperbolic tangent. Similarly
sechx = 1

coshx
defines the hyperbolic secant.

The hyperbolic tangent function has many interesting applications. One near and dear to
my heart is rapidity. In special relativity we define the rapidity to be the hyperbolic angle
ϕ such that tanhϕ = β = v

c
where v is velocity of a particle and c is the speed of light. It

turns out that while velocites do no add, rapidities do. For example, if I throw a baseball
on a train with rapidity ϕ1 and I throw that ball with a speed relative the train such that it
has rapidity ϕ2 in the train-frame then with respect to the frame in which the train tracks
are stationary the ball has rapidity ϕ1 + ϕ2.

Experiments show again and again that velocities of material objects have −c < v < c where
c is the speed of light in empty space. Thus, experiments show −1 < v

c
< 1 for material

objects. The hyperbolic tangent gives us a mathematical object which complies with this
cosmic speed limit. In particular, observe

tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
=

e2x − 1

e2x + 1



and think about what happens in the limits x → ∞ and x → −∞ to see −1 < tanhx < 1.
Of course, it was precisely this feature that caused physicists to define rapidity in terms of
a hyperbolic tangent. For all ϕ we have −1 < tanhϕ = β = v

c
< 1.

Remark 5.4. Hyperbolic functions commonly appear in many physics and engineering prob-
lems. For example, the voltage function on a rectangular plate where the sides are insulated
but the base and top edges are held at different voltages. The solution is commonly given in
terms of hyperbolic functions.

A hanging chain takes the shape of the graph of hyperbolic cosine. Hyperbolic functions
have a beautiful synergy with trigonometric functions and we have only begun to scratch the
surface here. I could show you integrals that were difficult with trigonometric subsitution
that become nearly trivial with a hyperbolic subsitution. Email me if you’re interested, I’d be
happy to show you where to look.

5.1 Playing with Euler’s Formula

We discussed this in lecture earlier this semester, I leave it here as a digression.

What do you know? If you know that eix = cosx+ i sinx since

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ · · ·

=

(
1− 1

2
x2 +

1

4!
x4 + · · ·

)
+ i

(
x− 1

3
x3 +

1

5!
x5 + · · ·

)
= cosx+ i sinx

and you notice, since sine is odd e−ix = cos(−x) + i sin(−x) = cos x− i sinx thus

1 = eixe−ix = (cosx+ i sinx)(cosx− i sinx) = cos2 x+ sin2 x.

then you see we can derive the Pythagorean Identity cos2 x + sin2 x = 1 via these rather
crafty series arguments. It stands to reason then that our hyperbolic functions ought to
appear as subseries for something like eix. Why not try ex ?

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

= 1 +
1

2
x2 +

1

4!
x4 + · · ·︸ ︷︷ ︸

defines coshx

+x+
1

3
x3 +

1

5!
x5 + · · ·︸ ︷︷ ︸

defines sinhx

= coshx+ sinhx

By construction cosh is even and sinh is odd hence cosh(−x) = coshx and sinh(−x) =
− sinhx. Thus e−x = cosh(−x) + sinh(−x) = cosh x− sinhx and so we find:

1 = exe−x = (coshx+ sinhx)(coshx− sinhx) = cosh2 x− sinh2 x.



6 Conic Sections in Polar Coordinates

The conic section of eccentricity e > 0 with focus at the origin and directrix x = d has polar
equation:

r =
ed

1 + e cos θ

The conic section from e = 0 is simply the circle r = R.
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