
James S. Cook Summary of events leading to Test 1

The purpose of this document is to collect the central results which we have discussed.
Of course, it should be noted that Missions 1,2 and 3 give some indication of what the
test is likely to focus upon. Modulo bonus problems naturally, that said, there may still
be sub-calculations in the bonus problems which are worth study. For example, solving
f(x) = x18 + x14 + 3x + 10 ≡ 0 modulo 21 is a pain, but, is f(4) ≡ 0 modulo 21 is a
completely reasonable test question.

Notation matters. Please take some time to have a clear mind about what is meant by
[a] = [b] verses a ≡ b modulo n. I usually give you freedom to work with equality of sets or
with congruence of integers. But, you ought to be aware the difference.

1 definitions and theorems

Theorem 1.1. nonzero division algorithm: If a, b ∈ Z with b 6= 0 then there is a unique
quotient q ∈ Z and remainder r ∈ Z for which

a = qb+ r & 0 ≤ r < |b|.

Definition 1.2. Let a, b ∈ Z then we say b divides a if there exists c ∈ Z such that a = bc.
If b divides a then we also say b is a factor of a and a is a multiple of b.

The notation b | a means b divides a. If b is does not divide a then we write b - a.

Definition 1.3. If p ∈ N such that n | p implies n = p or n = 1 then we say p is prime.

In words: a prime is a positive integer whose only divisors are 1 and itself.

Proposition 1.4. Let a, b, c, d,m ∈ Z. Then,

(i.) if a | b and b | c then a | c,

(ii.) if a | b and c | d then ac | bd,

(iii.) if m 6= 0, then ma | mb if and only if a | b

(iv.) if d | a and a 6= 0 then |d| ≤ |a|.

Theorem 1.5. Let a1, . . . , ak, c ∈ Z. Then,

(i.) if c | ai for i = 1, . . . , k then c | (u1a1 + · · ·+ ukak) for all u1, . . . , uk ∈ Z,

(ii.) a | b and b | a if and only if a = ±b.

Corollary 1.6. If c | x and c | y then c | (ax+ by) for all a, b ∈ Z.
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Definition 1.7. If d | a and d | b then d is a common divisor of a and b. Moreover, if
a, b ∈ Z, not both zero, then the greatest common divisor of a and b is denoted gcd(a, b).

Lemma 1.8. Let a, b, q, r ∈ Z. If a = qb+ r then gcd(a, b) = gcd(b, r).

This Lemma leads quickly to the Euclidean algorithm below:

Theorem 1.9. Euclidean Algorithm: suppose a, b ∈ N with a > b and form the finite
sequence {b, r1, r2, . . . , rn} for which rn+1 = 0 and b, r1, . . . , rn are defined as given by the
division algorithm:

a = q1b+ r1,

b = q2r1 + r2,

r1 = q3r2 + r3, . . . ,

rn−2 = qnrn−1 + rn,

rn−1 = qn+1rn.

Then gcd(a, b) = rn.

In addition to mere calculation of gcd(a, b) the Euclidean algorithm provides the following1:

Theorem 1.10. Bezout’s Identity: if a, b ∈ Z, not both zero, then there exist x, y ∈ Z
such that ax+ by = gcd(a, b).

In what follows, we assume n ∈ N throughout.

Definition 1.11. Let a, b ∈ Z then we say a is congruent to b mod(n) and write a ≡ b
mod(n) if a and b have the same remainder when divided by n.

The definition above is made convenient by the simple equivalent criteria below:

Theorem 1.12. a ≡ b mod(n) if and only if n | (b− a).

Proposition 1.13. Let n be a positive integer, for all x, y, z ∈ Z,

(i.) x ≡ x mod(n),

(ii.) x ≡ y mod(n) implies y ≡ x mod(n),

(iii.) if x ≡ y mod(n) and y ≡ z mod(n) then x ≡ z mod(n).

Corollary 1.14. Let n ∈ N. Congruence modulo n forms an equivalence relation on Z.

Definition 1.15. equivalence classes of Z modulo n ∈ N:

[x] = {y ∈ Z | y ≡ x mod(n)}
1calculationally this is accomplished by manipulation of the vector (a, b) to shadow the algorithm as we

saw in the last Episode
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Observe, there are several ways to characterize such sets:

[x] = {y ∈ Z | y ≡ x mod(n)} = {y ∈ Z | y − x = nk for some k ∈ Z} = {nk + x | k ∈ Z}.

I find the last presentation of [x] to be useful in practical computations.

Definition 1.16. Coset Notation: Let n ∈ N and a ∈ Z we define:

nZ = {nk | k ∈ Z} nZ + a = {nk + a | k ∈ Z}.

Observe, in the notation just introduced, we have

[a] = nZ + a

Equivalence classes of an equivalence relation are disjoint. Therefore, the proposition below
is an inevitability:

Proposition 1.17. Let n ∈ N. We have [x] = [y] if and only if x ≡ y mod(n). Or, in the
coset notation nZ + x = nZ + y if and only if y − x ∈ nZ.

In contrast to the proposition above, the one that follows is not generally true for other
equivalence relations where there might not even exist some concept of + or ×.

Proposition 1.18. Let n ∈ N. If [x] = [x′] and [y] = [y′] then

(i.) [x+ y] = [x′ + y′],

(ii.) [xy] = [x′y′]

(iii.) [x− y] = [x′ − y′]

Of course, we sometimes find it convenient to think in terms of congruences:

Corollary 1.19. Let n ∈ N. If x ≡ x′ and y ≡ y′ modulo n then

(i.) x+ y ≡ x′ + y′ mod(n),

(ii.) xy ≡ x′y′ mod(n),

(iii.) x− y ≡ x′ − y′ mod(n),

Definition 1.20. modular arithmetic: let n ∈ N, define

[x] + [y] = [x+ y] & [x][y] = [xy]

for all x, y ∈ Z. Or, if we denote the set of all equivalence classes modulo n by Z/nZ then
write: for each nZ + x, nZ + y ∈ Z/nZ

(nZ + x) + (nZ + y) = nZ + x+ y & (nZ + x)(nZ + y) = nZ + xy.

Finally, we often use the notation Zn = Z/nZ.
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Notice many properties of integer arithmetic transfer to Z/nZ, for k ∈ N,

[a1] + [a2] + · · ·+ [ak] = [a1 + a2 + · · ·+ ak]

[a1][a2] · · · [ak] = [a1a2 · · · ak]

[a]k = [ak].

Naturally, as we discuss Zn it is convenient to have a particular choice of representative for
this set of residues. Two main choices: the set of least non-negative residues

Zn = {[0], [1], [2], . . . , [n− 1]}

alternatively, set of least absolute value residues or simply least absolute residues

Zn = {[0], [±1], [±2], . . . }

where the details depend on if n is even or odd.

Sorry folks, out of time for more here, basically, what I fail to list here are
the theorems from Lecture 4. In particular, Fermat’s little theorem, Lagrange’s
Theorem and Euler’s Theorem. I do hope you know these and I wouldn’t be too
surprised if I asked for a proof of something in that lecture.

Theorem 1.21. Prime Divisor Property: If a prime p | ab then p | a or p | b.

Proof: see Lecture 2.

Theorem 1.22. Unique Prime Factorization of N: Let n ∈ N then there exist a unique
set of distinct primes p1, p2, . . . , pk and multiplicities r1, r2, . . . , rk for which n = pr11 p

r2
2 · · · p

rk
k .

Proof: see Lecture 2.

Theorem 1.23. Prime Factorization of squares: there exists m ∈ N such that n = m2

iff n is the product of primes to even powers.

Proof: this is essentially a corollary to the unique prime factorization theorem.

Theorem 1.24. Square coprime products: if gcd(a, b) = 1 and ab = m2 for some m ∈ N
then there exist j, k ∈ N such that a = j2 and b = k2. Moreover, a coprime product is a
square iff it is the product of squares.

Proof: notice the product of squares is a square hence the forward implication
is the only nontrivial assertion in the above theorem.

Theorem 1.25. Irrationality of square root: if N is a non-square natural number then√
N is irrational.

Proof: see Lecture 2 page 7.

Theorem 1.26. Product of gcd and lcm: let a, b ∈ N then ab = gcd(a, b)lcm(a, b).
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Proof: see page 33 of Stillwell.

Theorem 1.27. Let n ∈ N such that there exist a unique set of distinct primes p1, p2, . . . , pk
and multiplicities r1, r2, . . . , rk for which n = pr11 p

r2
2 · · · p

rk
k . Then a ≡ b mod(n) if and only

if a ≡ b mod(prii ) for each i = 1, 2, . . . k.

Proof: see Episode I.

Theorem 1.28. Let f(x) ∈ Z[x], that is let f(x) be a polynomial with integer coefficients,
and suppose n ∈ N. If a ≡ b mod(n) then f(a) ≡ f(b) mod(n).

Proof: see Episode I.

Theorem 1.29. General Solution of the Linear Diophantine Equation: If a, b, c ∈ Z
then ax+by = c has an integer solution iff gcd(a, b) | c. Furthermore, supposing d = gcd(a, b)
there exist m,n ∈ Z such that d = am + bn. All integer solutions of ax + by = c are hence
constructed: for each t ∈ Z,

x = md+
bt

d
& y = nd− at

d
.

Proof: see Lecture 2.

2 standard problems

(1.) find the least positive residue of ax mod n where x is stupidly large.

(2.) calculate φ(n) for some n < 500. ( I think you guys can find prime factoriza-
tions of integers less than 500 with relative ease, do have a calculator, notice
there must be a prime factor p <

√
500 so you only have about 20 things to

check, many of which are immediately ruled out for a given n)

(3.) solve ax ≡ b modulo n if possible.

(4.) test if a, b ∈ Z are relatively prime. If so, exhibit Bezout’s Identity.

(5.) simplify things with respect to modular arithmetic.

(6.) Find multiplication table for (Z/kZ)×. In the case k is prime this is quite
easy, in the case k is composite it requires some thought.

(7.) Find the order of a given element in (Z/kZ)×

(8.) Is it possible a particular element in (Z/kZ)× has order blah? (what theorem
helps here?)

(9.) Find cosets with respect to particular subgroup of (Z/kZ)×.

(10.) Find binary, or other base, representation of a given positive integer.
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(11.) Binary exponentiation: can use calculate [m]347 modulo 37 without taking
the whole test time? What is your strategy of attack on such a problem?
(see page 7 of Lecture 7 for the idea, you don’t have to adhere to my exact
method, but, be aware the concept)

(12.) prove your basic divisibility lemmas

(13.) use prime factorization theorems to prove irrationality of
√
n with ease. (in

contrast, in another course, you might use the well-ordering-principle on
some particular set, this semester we took a more constructive approach.
This comment mostly for those of you who studied with Kester or happen
to recall how you proved

√
2 was irrational in Math 200 by arguments not

based on direct application of the fundamental theorem of arithmetic.

(14.) what is the fundamental theorem of arithmetic? ( I may have failed to say
this in class, for shame!)

(15.) show f(x) = 0 permits no integer solutions via appropriate modular arith-
metic. (here, to be kind, your instructor should pick f(x) for which f(x) 6≡ 0
modulo n for say n = 2, 3, 4, 5)

(16.) Chinese remainder problem (with relatively prime moduli)

(17.) Egyptian fraction finding

(18.) Continued fraction finding

(19.) Casting out whatever type problems (see lecture 3 for the flavor)

(20.) (Removed from test 1: we actually do more justice to this soon after test
1.) Be able to prove the 2-square identity (can use complex number if you
like, or just direct algebra if you insist on keeping it real).

(21.) (Removed from test 1: we actually do more justice to this soon after test
1.) Be able to verify Euclid’s parametric formulas for Pythagorean triples.

(22.) can you prove the prime divisor property?
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