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Abstract

In this article we primarily study first order ordinary differential equations. We study three
major methods of solution: (1.) separation of variables (2.) the integrating factor technique
(3.) substitution. We study how differential equations arise from natural questions in science
and engineering. Direct solution is not always possible, so we begin by examining methods to
visualize differential equations directly using its direction field or isocline plot. Euler’s Method
uses a recursive algorithm to approximate solutions. Certainly there are more examples here
than I can reasonably cover in lecture, and there is a fair amount of physical reasoning mixed
into the later part of this article. Please understand this is a math class and I primarily test on
math. I include the physical reasoning and analysis in the hope it is interesting to the physically
motivated student.

1 Introduction to Differential Equations

What is a differential equation ? In short, it is an equation which involves derivatives. We will
use the abbreviation DEqn for differential equation and we will use ODE for ordinary differential
equation. I should mention, the abbreviation PDE means partial differential equation which is an
equation which involves partial derivatives1.

Definition 1.1. Differential Equation

A first order ODE can be expressed as dy
dx = F (x, y) where F is an expression in x, y. If

ϕ is a function for which dϕ
dx = F (x, ϕ(x)) then we say ϕ is an explicit solution.

Example 1.2. Consider dy
dx = x2 then observe

∫ dy
dx dx = y =

∫
x2 dx = 1

3x
3 + c thus y = 1

3x
3 + c

gives a family of explicit solutions for the given DEQn.

Not every ODEqn is so simple to solve as the example above. Usually it is not possible to just
directly integrate the problem. We’ll see that some algebra, a clever multiplication, subsitution or
both are needed to solve problems which naturally arise in applications.

There are also higher order ODEqns such as the second order y′′+ t2y = 0 or y′′+y3 = 0. We say
y′′+y = 0 is a linear DEqn since its dependent variable y appears linearly. In contrast, y′′+y3 = 0

1we cover partial derivatives in Calculus III, or my Physics 231. I suppose I should mention, most of the fun-
damental theorems of modern physics at a classical level are PDEs (Maxwell’s Equation, Schrodinger’s Equation,
Einstein’s Field Equations, etc...
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is a nonlinear ODE due to the y3-term. Notice the notation y′′ hides the explicit notation for the

independent variable. We might have y′′ = d2y
dx2

or we might have y′′ = d2y
dt2

. The choice of notation
depends on the setting. When the independent variable is time we tend to use t. However, I often
give examples with x since students tend to be more comfortable with calculus done in the letter
x. There are also interesting systems of ODEs. For example,

dx

dt
= x+ y &

dy

dt
= −x+ y

might model a predator-prey problem where x is the number of cute delicious bunnies and y is the
number of dogs. Newton’s law ~F = m~a = md2~r

dt2
is a system of second order ODEs. ODEs appear in

numerous physical applications. I conclude this article with many applied examples ranging from
population growth to electrical circuits to problems from Newton’s classical mechanics.

Sometimes we cannot find an explicit solution so the following definition is very helpful.

Definition 1.3. Differential Equation

If implicit differentiation of G(x, y) = C yields dy
dx = F (x, y) then the curve defined by

G(x, y) = C is known as an implicit solution of the dy
dx = F (x, y). The family of all

explicit or implicit solutions to a DEqn is known as the general solution. A solution
to the intial value problem dy

dx = F (x, y) with (xo, yo) is a solution of the DEQn which
includes the point (xo, yo).

Example 1.4. The differential equation dy
dx = x2 has general solution y = x3/3 + c. We can select

an appropriate value of c to solve a given initial value problem for the DEqn. For instance, to find
the solution through (1, 4/3) we set 4/3 = 1/3 + c and find c = 1 which means y = x3/3 + 1 solves
the given intial value problem.

In retrospect, every integral we solved is equivalent to a first order differential equation:∫
f(x)dx = y ⇔ dy

dx
= f

So, we’ve already solved a bunch of DEqns this term, you just didn’t realize it. That said, we will
need new methods to solve the DEqns found in this article.The main techniques we will study are:

(1.) separation of variables

(2.) integrating factor method

(3.) substitution

Beyond that we study how to solve a select subclass of really nice 2nd order problems which are very
important to applications. The methods of this article are by no means complete or algorithmic.
Solving arbitrary first order problems is an art. That said, it is not a hidden art, it is one we all
must master. We begin with methods to visualize and approximate solutions to first order ODEs.
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2 Visualizations and Euler’s Method

The solution of dy
dx = F (x, y) is a curve whose slope at (x, y) is F (x, y). We can expect solutions

will match the slopes prescribed by the given DEqn.

Example 2.1. Consider dy
dx = y this has solution y = cex by math magic2. Notice d

dx(cex) = cex

thus y = cex solves dy
dx = y.

I found a nice Geogebra page(linked here) which visualizes the xy-plane and plots little dashes to
indicate the slopes given by the DEqn. Look what happens for the example above:

You can adjust the density of the dashes shown as well as their length and it plots four solutions
through four initial values which you select by moving the little labeled dots. This website is very
user friendly and I recommend it to study the geometry of solutions for dy

dx = f(x, y). However, I
should mention, there are pitfalls we can face from a lack of attention to domain.

For example, consider the differential equation dy
dx = −x

y . Technically this is not defined when
y = 0. In contrast, if we study the corresponding Pfaffian form of the differential equation given
by xdx+ ydy = 0 then there is no apparent problem with the domain of the differential equation.
In short, solving for dy

dx limits our attention to solutions where y can be written as a function of x.

Example 2.2. Observe dy
dx = −x

y has implicit solution x2 + y2 = R2. Differentiate implicity to see

2x+2y dydx = 0 thus dy
dx = −x

y . The differential of x2+y2 = R2 is 2xdx+2ydy = 0 hence xdx+ydy = 0

is a differential consequence of the equation x2 + y2 = R2. In my opinion, xdx+ ydy = 0 should be
viewed as primary and the family of circles x2 + y2 = R2 forms the general solution.

When we limit our thinking to functions alone it causes problems. See what happens with the nice
Geogebra page(linked here) when it tries to visualize the solutions for the example above. It gets
stuck where y = 0 since the formula defining the differential equation blows up at that point and
the numerical method which underlies the computer program produces garbage.

2we learn how to derive this in the next section, have patience my friend
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There is a solution to the coordinate defect problem we encountered above. Suppose we wish to
visualize the solution of dy

dx = A
B where A,B are both functions of x, y in general. Suppose

dy

dt
= A &

dy

dt
= B

then formally
dy

dx
=

dy
dt
dx
dt

=
A

B
.

Remark 2.3.

To plot the direction field for dy
dx = A

B we put x′ = B and y′ = A in a website or software
which plots systems of differential equations in the plane. For example,this website hosted
by the University of Arkansas based on the phase plane plotter in Matlab.

I use the pplane java applet available at (click here) to produce the direction field for dy
dx = x

−y by

setting x′ = −y and y′ = x in the pplane tool:
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Example 2.4. Problem: plot the direction field for dy
dx = (x+ y − 6)2 and a few solutions.

Solution: use pplane with x′ = 1 and y′ = (x+ y − 6)2.

We show solutions are given by y = 6 + tan(x+ C)− x in Example 5.1. This is the plot of that.

Example 2.5. Problem: plot the isocline field for dy
dx = y3+x2y−y−x

xy2+x3+y−x and a few solutions.

Solution: we use pplane with x′ = xy2 + x3 + y − x and y′ = y3 + x2y − y − x.

The solution of this requires a polar coordinate change which is helpful since this DEqn has a
rotational symmetry. Also, notice that all solutions asymptotically are drawn to the unit circle. If
the solution begins inside the circle it is drawn outwards to the circle whereas all solutions outside
the circle spiral inward. The neat thing is we can appreciate how solutions behave for the given
DEqn even though the solution is currently beyond our grasp.
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Example 2.6. Suppose we want to create functions which level out when y = 1 or y = 3 and are
decreasing for 1 < y < 3 and yet are increasing elsewhere. A moment’s reflection reveals

dy

dx
= (y − 1)(y − 3)

has dy
dx < 0 for 1 < y < 3 and dy

dx > 0 for y > 3 or y < 1. We can visually check our DEqn by
plotting its direction field.

Notice I turned on the ”show nullclines” feature which plots the solutions which have dy
dx = 0 along

the whole solution. For this example, these equilbrium solutions are y = 1 and y = 3.

Example 2.7. Suppose we want a functions whose graph is increasing in Quadrants I and III and
yet is decreasing in Quadrants II and IV. An expression which comes to mind is xy since xy > 0
when both x and y are of the same sign and xy < 0 whenever x and y differ in sign. Solutions to

dy

dx
= xy

should have the desired traits. Set x′ = 1 and y′ = xy in pplane and we plot:
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Example 2.8. Suppose we want a functions whose graph has horizontal tangents at any point of
intersection with y = x2 and whose graph have vertical tangents at x = ±1. We want a fraction
whose numerator is zero for y = x2 and whose denominator is zero for x = ±1. The natural
candidate to try is:

dy

dx
=
y − x2

x2 − 1
.

Set x′ = x2 − 1 and y′ = y − x2 in pplane and we plot:

Pplane plotted nullclines of x = ±1 as well as y = x2 in dark yellow/red.

Example 2.9. Suppose we want a functions whose graph has horizontal tangents at any point of
intersection with x2 + y2 = 1 and whose graph have vertical tangents at x2 + y2 = 9. Following the
same idea as the previous example we study

dy

dx
=
x2 + y2 − 1

x2 + y2 − 9
.

Set x′ = x2 + y2 − 9 and y′ = x2 + y2 − 1 in pplane and we plot:

Pplane plotted nullclines of x2 + y2 = 1 and x2 + y2 = 9 in dark yellow/red circles.
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2.1 Euler’s Method

Programs such as pplane are based on using a numerical method to piece together approximate
solutions to the given DEqn. Euler’s Method is possibly the simplest such method. Given a direc-
tion field we could implement Euler’s Method simply by tracing curves which align with the arrows
they intersect.

Basically the method is simply this: pick a point, find its tangent line as prescribed by the DEqn,
follow the tangent line a bit, then repeat. Euler’s Method is a recursive method. Each step is
based on the previous step. Consider the differential equation dy

dx = F (x, y) where F (x, y) is a given
expression involving x, y. Choose a step-size h and an initial point (x0, y0). Then the tangent line
to the initial point is

y = y0 + F (x0, y0)(x− x0).

If we follow the tangent line to x = x0 +h we get y = y0 +F (x0, y0)h. Therefore, the next point we
find is (x1, y1) where x1 = x0 + h and y1 = y0 + F (x0, y0)h. Continuing, build our second tangent
line with base point (x1, y1) and slope F (x1, y1)

y = y1 + F (x1, y1)(x− x1).

If we follow the tangent line above to x2 = x1 + h then we find y2 = y1 + F (x1, y1)h. Then we
continue in this fashion as long as we wish in order to create an array of points which approximately
follows the solution curves of the given DEqn.

Definition 2.10. Euler’s Method

Consider the differential equation dy
dx = F (x, y) where F (x, y) is a given expression involving

x, y. Choose a step-size h and an initial point (x0, y0). For n = 0, 1, 2, . . . define

xn+1 = xn + h & yn+1 = yn + F (xn, yn)h

Example 2.11. Consider dy
dx = y with initial point (0, 1) and step-size h = 0.2. We will estimate

the value of the solution when x = 2. Identify F (x, y) = y and (x0, y0) = (0, 1) thus calculate
F (0, 1) = 1

(1.) y1 = 1 + 1(0.2) = 1.2 hence (x1, y1) = (0.2, 1.2) and calculate F (0.2, 1.2) = 1.2

(2.) y2 = 1.2 + 1.2(0.2) = 1.44 calculate F (0.4, 1.44) = 1.44

(3.) y3 = 1.44 + 1.44(0.2) = 1.728 calculate F (0.6, 1.728) = 1.728

(4.) y4 = 1.728 + 1.728(0.2) = 2.0736 calculate F (0.8, 2.0736) = 2.0736

(5.) y5 = 2.0736 + 2.0736(0.2) = 2.48832

Thus we approximate the value of the solution to dy
dx = y by y(1) ≈ 2.48832. Since the exact solution

is given by y = ex we can compare our approximation to the real solution value of y(1) = e1 ≈
2.7183.

Fun fact, if you run Euler’s Method with h = 0.01 on the above example you can calculate y100 ≈
2.70 which is much closer to the real answer. The next example demonstrates that there are some
problems where Euler’s Method fails.
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Example 2.12. Consider dy
dx =

√
x2 + 4y3 with initial point (2, 1) and step-size h = 0.5. We will

estimate the value of the solution when x = 4. Identify F (x, y) =
√
x2 + 4y3 and (x0, y0) = (2, 1)

thus calculate F (2, 1) =
√

22 + 4(1)3 ≈ 2.83

(1.) y1 = 1 + 2.83(0.5) ≈ 2.41 hence (x1, y1) = (2.5, 2.41) and
calculate F (2.5, 2.41) =

√
2.52 + 4(2.41)3 ≈ 7.91

(2.) y2 = 2.41 + 7.91(0.5) ≈ 6.37 calculate F (3, 6.37) ≈ 32.3

(3.) y3 = 6.37 + 32.3(0.5) ≈ 22.5 calculate F (3.5, 22.5) ≈ 213.6

(4.) y4 = 32.3 + 213.6(0.5) ≈ 129.3

Thus we approximate the value of the solution to dy
dx =

√
x2 + 4y3 by y(4) ≈ 129.3.

Fun fact, if you run Euler’s Method on the example above with a step-size of 0.1 then y(4) =
y20 = 2.44 × 1030. I believe this example is numerically troublesome. If you look at the solutions
generated by pplane for this problem you’ll see the solutions grow very rapidly near the initial data
point. This means Euler’s Method has large error.

3 Separation of Variables

Suppose you are faced with the problem dy
dx = f(x, y). If it happens that f can be factored into

a product of functions f(x, y) = g(x)h(y) then the problem is said to be separable. Proceed
formally for now, suppose h(y) 6= 0,

dy

dx
= g(x)h(y) ⇒ dy

h(y)
= g(x) dx ⇒

∫
dy

h(y)
=

∫
g(x) dx

Ideally, we can perform the integrations above and solve for y to find an explicit solution. However,
it may even be preferrable to not solve for y and capture the solution in an implicit form. Let me
provide a couple examples before I prove the method at the end of this section.

Example 3.1. Problem: Solve dy
dx = 2xy.

Solution: Separate variables to find
∫ dy

y =
∫

2x dx hence ln |y| = x2 + c. Exponentiate to obtain

|y| = ex
2+c = ecex

2
. The constant ec 6= 0 however, the absolute value allows for either ±. Moreover,

we can also observe directly that y = 0 solves the problem. We find y = kex
2

is the general solution
to the problem.

An explicit solution of the differential equation is like an antiderivative of a given integrand. The
general solution is like the indefinite integral of a given integrand. The general solution and the
indefinite integral are not functions, instead, they are a family of functions of which each is an
explicit solution or an antiderivative. Notice that for the problem of indefinite integration the
constant can always just be thoughtlessly tacked on at the end and that will nicely index over
all the possible antiderivatives. On the other hand, for a differential equation the constant could
appear in many other ways.
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Example 3.2. Problem: Solve dy
dx = −2x

2y .

Solution: separate variables and find
∫

2y dy = −
∫

2x dx hence y2 = −x2+c. We find x2+y2 = c.
It is clear that c < 0 give no interesting solutions. Therefore, without loss of generality, we assume

c ≥ 0 and denote c = R2 where R ≥ 0. Altogether we find x2 + y2 = R2 is the general implicit
solution to the problem. To find an explicit solution we need to focus our efforts, there are two
cases:

1. if (a, b) is a point on the solution and b > 0 then y =
√
a2 + b2 − x2.

2. if (a, b) is a point on the solution and b < 0 then y = −
√
a2 + b2 − x2.

Notice here the constant appeared inside the square-root. I find the implicit formulation of the
solution the most natural for the example above, it is obvious we have circles of radius R. To
capture a single circle we need two function graphs. Generally, given an implicit solution we can
solve for an explicit solution locally. The implicit function theorems of advanced calculus give
explicit conditions on when this is possible.

Example 3.3. Problem: Solve dy
dx = ex−2 ln |y|.

Solution: recall ex−ln |y|
2

= exeln |y|
2

= ex|y|2 = exy2. Separate variables in view of this algebra:

dy

y2
= ex dx ⇒ −1

y
= ex + C ⇒ y =

−1

ex + C
.

When I began this section I mentioned the justification was formal. I meant that to indicate the
calculation seems plausible, but it is not justified. We now show that the method is in fact justified.
In short, I show that the notation works.

Proposition 3.4. separation of variables:

The differential equation dy
dx = g(x)h(y) has an implicit solution given by∫

dy

h(y)
=

∫
g(x) dx

for (x, y) such that h(y) 6= 0.

Proof: to say the integrals above are an implicit solution to dy
dx = g(x)h(y) means that the

differential equation is a differential consequence of the integral equation. In other words, if we
differentiate the integral equation we should hope to recover the given DEqn. Let’s see how this
happens, differentiate implicitly,

d

dx

∫
dy

h(y)
=

d

dx

∫
g(x) dx ⇒ 1

h(y)

dy

dx
= g(x) ⇒ dy

dx
= h(y)g(x). 2

Remark 3.5.

Technically, there is a gap in the proof above. How did I know implicit differentiation was
possible? Is it clear that the integral equation defines y as a function of x at least locally? We
could use the implicit function theorem on the level curve F (x, y) =

∫ dy
h(y) −

∫
g(x) dx = 0.

Observe that ∂F
∂y = 1

h(y) 6= 0 hence the implicit function theorem provides the existence of

a function φ which has F (x, φ(x)) = 0 at points near the given point with h(y) 6= 0. This
comment comes to you from the advanced calculus course.
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4 Integrating Factor Method

Let p and q be continuous functions. The following differential equation is called a linear differ-
ential equation in standard form:

dy

dx
+ py = q (?)

Our goal in this section is to solve equations of this type. Fortunately, linear differential equations
are very nice and the solution exists and is not too hard to find in general, well, at least up-to a
few integrations.

Notice, we cannot directly separate variables because of the py term. A natural thing to notice is
that it sort of looks like a product, maybe if we multiplied by some new function I then we could
separate and integrate: multiply ? by I,

I
dy

dx
+ pIy = qI

Now, if we choose I such that dI
dx = pI then the equation above separates by the product rule:

dI

dx
= pI ⇒ I

dy

dx
+
dI

dx
y = qI ⇒ d

dx

[
Iy
]

= qI ⇒ Iy =

∫
qI dx ⇒ y =

1

I

∫
qI dx.

Very well, but, is it possible to find such a function I? Can we solve dI
dx = pI? Yes. Separate

variables,
dI

dx
= pI ⇒ dI

I
= p dx ⇒ ln(I) =

∫
p dx ⇒ I = e

∫
p dx.

Proposition 4.1. integrating factor method:

Suppose p, q are continuous functions which define the linear differential equation dy
dx+py = q

(label this ?). We can solve ? by the following algorithm:

(1.) define I = exp(
∫
p dx),

(2.) multiply ? by I,

(3.) apply the product rule to write I? as d
dx

[
Iy
]

= Iq.

(4.) integrate both sides,

(5.) find general solution y = 1
I

∫
Iq dx.

Proof: Define I = e
∫
p dx, note that p is continuous thus the antiderivative of p exists by the FTC.

Calculate,
dI

dx
=

d

dx
e
∫
p dx = e

∫
p dx d

dx

∫
p dx = pe

∫
p dx = pI.

Multiply ? by I, use calculation above, and apply the product rule:

I
dy

dx
+ Ipy = Iq ⇒ I

dy

dx
+
dI

dx
y = Iq ⇒ d

dx

[
Iy
]

= Iq.
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Integrate both sides,∫
d

dx

[
Iy
]
dx =

∫
Iq dx ⇒ Iy =

∫
Iq dx ⇒ y =

1

I

∫
Iq dx. 2

The integration in y = 1
I

∫
Iq dx is indefinite. It follows that we could write y = C

I + 1
I

∫
Iq dx.

Note once more that the constant is not simply added to the solution.

Example 4.2. Problem: find the general solution of dy
dx + 2

xy = 3

Solution: Identify that p = 2/x for this linear DE. Calculate, for x 6= 0,

I = exp

(∫
2dx

x

)
= exp(2 ln |x|) = exp(ln |x|2) = |x|2 = x2

Multiply the DEqn by I = x2 and then apply the reverse product rule;

x2
dy

dx
+ 2xy = 3x2 ⇒ d

dx

[
x2y

]
= 3x2

Integrate both sides to obtain x2y = x3 + c therefore y = x+ c/x2 .

We could also write y(x) = x+ c/x2 to emphasize that we have determined y as a function of x.

Example 4.3. Problem: let r be a real constant and suppose g is a continuous function, find the
general solution of dy

dt − ry = g

Solution: Identify that p = r for this linear DE with independent variable t. Calculate,

I = exp

(∫
r dt

)
= ert

Multiply the DEqn by I = ert and then apply the reverse product rule;

ert
dy

dt
+ rerty = gert ⇒ d

dt

[
erty

]
= gert

Integrate both sides to obtain erty =
∫
g(t)ert dt+c therefore y(t) = ce−rt + e−rt

∫
g(t)ert dt . Now

that we worked this in general it’s fun to look at a few special cases:

1. if g = 0 then y(t) = ce−rt .

2. if g(t) = e−rt then y(t) = ce−rt + e−rt
∫
e−rtert dt hence y(t) = ce−rt + te−rt .

3. if r 6= s and g(t) = e−st then y(t) = ce−rt + e−rt
∫
e−stert dt = ce−rt + e−rt

∫
e(r−s)t dt

consqeuently we find that y(t) = ce−rt + 1
r−se

−rte(r−s)t and thus y(t) = ce−rt +
1

r − s
e−st .
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5 Substitutions

In this section we discuss a few common substitutions. The idea of substitution is simply to
transform a given problem to one we already know how to solve. I’ll illustrate via example.

Example 5.1. Problem: solve dy
dx = (x+ y − 6)2. (call this ?)

Solution: the substitution v = x+y−6 looks promising. We obtain y = v−x+6 hence dy
dx = dv

dx−1
thus the DEQn ? transforms to

dv

dx
− 1 = v2 ⇒ dv

dx
= v2 + 1 ⇒ dv

1 + v2
= dx ⇒ tan−1(v) = x+ C

Hence, tan−1(x + y − 6) = x + C is the general, implicit, solution to ?. In this case we can solve
for y to find the explicit solution y = 6 + tan(x+ C)− x.

Remark 5.2.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (ax + by + c)

is solved through the substitution v = ax+ by + c.

Example 5.3. Problem: solve dy
dx = y/x+1

y/x−1 . (call this ?)

Solution: the substitution v = y/x looks promising. Note that y = xv hence dy
dx = v + x dvdx by the

product rule. We find ? transforms to:

v + x
dv

dx
=
v + 1

v − 1
⇒ x

dv

dx
=
v + 1

v − 1
− v =

v + 1− v(v − 1)

v − 1
=
−v2 + 2v + 1

v − 1

Hence, separating variables,

(v − 1) dv

−v2 + 2v + 1
=
dx

x
⇒ −1

2
ln |v2 − 2v − 1| = ln |x|+ C̃

Thus, ln |v2− 2v− 1| = ln(1/x2) +C and after exponentiation and multiplication by x2 we find the

implicit solution y2 − 2xy − x2 = K.

Remark 5.4.

Generally the example above gives us hope that a DEqn of the form dy
dx = F (y/x) is solved

through the substitution v = y/x.

Example 5.5. Problem: Solve y′ + xy = xy3. (call this ?)

Solution: multiply by y−3 to obtain y−3y′+xy−2 = x. Let z = y−2 and observe z′ = −2y−3y′ thus
y−3y′ = −1

2 z
′. It follows that:

−1

2

dz

dx
+ xz = x ⇒ dz

dx
− 2xz = −2x
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Identify this is a linear ODE and calculate the integrating factor is e−x
2

hence

e−x
2 dz

dx
− 2xe−x

2
z = −2xe−x

2 ⇒ d(e−x
2
z) = −2xe−x

2
dx

Conquently, e−x
2
z = e−x

2
+ C which gives z = y−2 = 1 + Cex

2
. Finally, solve for y

y =
±1√

1 + Cex2
.

Given an initial condition we would need to select either + or − as appropriate.

Remark 5.6.

This type of differential equation actually has a name; a differential equation of the type
dy
dx + P (x)y = Q(x)yn is called a Bernoulli DEqn. The procedure to solve such problems
is as follows:

1. multiply dy
dx + P (x)y = Q(x)yn by y−n to obtain y−n dydx + P (x)y−n+1 = Q(x),

2. make the substitution z = y−n+1 and observe z′ = (1−n)y−ny′ hence y−ny′ = 1
1−nz

′,

3. solve the linear ODE in z; 1
1−n

dz
dx + P (x)z = Q(x),

4. replace z with y−n+1 and solve if worthile for y.

Sometimes a second-order differential equation is easily reduced to a first-order problem. The
examples below illustrate a technique called reduction of order.

Example 5.7. Problem: solve y′′ + y′ = x2. (call this ?)

Solution: Let y′ = v and observe y′′ = v′ hence ? transforms to

dv

dx
− v = e−x

multiply the DEqn above by the integrating factor ex:

ex
dv

dx
− vex = 1 ⇒ d

dx

[
exv

]
= 1

thus exv = x + c1 and we find v = xe−x + c1e
−x. Then as v = dy

dx we can integrate once more to
find the solution:

y =

∫ [
xe−x + c1e

−x]dx = −xe−x − e−x − c1e−x + c2

cleaning it up a bit,

y = −e−x(x− 1 + c1) + c2.
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Remark 5.8.

Generally, given a differential equation of the form y′′ = F (y′, x) we can solve it by a
two-step process:

1. substitute v = y′ to obtain the first-order problem v′ = F (v, x). Solve for v.

2. recall v = y′, integrate to find y.

There will be two constants of integration. This is a typical feature of second-order ODE.

Example 5.9. Problem: solve d2y
dt2

+ y = 0. (call this ?)

Solution: once more let v = dy
dt . Notice that

d2y

dt2
=
dv

dt
=
dy

dt

dv

dy
= v

dv

dy

thus ? transforms to the first-order problem:

v
dv

dy
+ y = 0 ⇒ vdv + ydy = 0 ⇒ 1

2
v2 +

1

2
y2 =

1

2
C2.

assume the constant C > 0, note nothing is lost in doing this except the point solution y = 0, v = 0.
Solving for v we obtain v = ±

√
C − y2. However, v = dy

dt so we find:

dy√
C2 − y2

= ±dt ⇒ sin−1(y/C) = ±t+ φ

Thus, y = C sin(±t + φ). We can just as well write y = A sin(t + φ). Moreover, by trigonometry,
this is the same as y = B cos(t + γ), it’s just a matter of relabeling the constants in the general
solution.

Remark 5.10.

Generally, given a differential equation of the form y′′ = F (y) we can solve it by a two-step
process:

1. substitute v = y′ and use the identity dv
dt = v dvdy to obtain the first-order problem

v dvdy = F (y). Solve for v.

2. recall v = y′, integrate to find y.

There may be several cases possible as we solve for v, but in the end there will be two
constants of integration.
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6 Physics and Applications

I’ve broken this section into two parts. The initial subsection examines how we can use differential-
equations techniques to better understand Newton’s Laws and energy in classical mechanics. This
sort of discussion is found in many of the older classic texts on differential equations. The second
portion of this section is a collection of isolated application examples which are focused on a
particular problems from a variety of fields.

6.1 Physics

In physics we learn that ~Fnet = m~a or, in terms of momentum ~Fnet = d~p
dt . We consider the one-

dimensional problem hence we have no need of the vector notation and we generally are faced with
the problem:

Fnet = m
dv

dt
or Fnet =

dp

dt

where the momentum p for a body with mass m is given by p = mv where v is the velocity as
defined by v = dx

dt . The acceleration a is defined by a = dv
dt . It is also customary to use the dot and

double dot notation for problems of classical mechanics. In particular: v = ẋ, a = v̇ = ẍ. Generally
the net-force can be a function of position, velocity and time; Fnet = F (x, v, t). For example,

1. the spring force is given by F = −kx

2. the force of gravity near the surface of the earth is given by F = ±mg (± depends on
interpretation of x)

3. force of gravity distance x from center of mass M given by F = −GmM
x2

4. thrust force on a rocket depends on speed and rate at which mass is ejected

5. friction forces which depend on velocity F = ±bvn (± needed to insure friction force is
opposite the direction of motion)

6. an external force, could be sinusoidal F = A cos(ωt), ...

Suppose that the force only depends on x; F = F (x) consider Newton’s Second Law:

m
dv

dt
= F (x)

Notice that we can use the identity dv
dt = dx

dt
dv
dx = v dvdx hence

mv
dv

dx
= F (x) ⇒

∫ vf

vo

mv dv =

∫ xf

xo

F (x) dx ⇒ 1
2mv

2
f − 1

2mv
2
o =

∫ xf

xo

F (x) dx.

The equation boxed above is the work-energy theorem, it says the change in the kinetic energy
K = 1

2mv
2 is given by

∫ xf
xo
F (x) dx. which is the work done by the force F . This result holds for

any net-force, however, in the case of a conservative force we have F = −dU
dx for the potential

energy function U hence the work done by F simplifies nicely∫ xf

xo

F (x) dx = −
∫ xf

xo

dU

dx
dx = −U(xf ) + U(xo)
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and we obtain the conservation of total mechanical energy 1
2mv

2
f −

1
2mv

2
o = −U(xf ) +U(xo)

which is better written in terms of energy E(x, v) = 1
2mv

2 + U(x) as E(xo, vo) = E(xf , vf ). The
total energy of a conservative system is constant. We can also see this by a direct-argument on the
differential equation below:

m
dv

dt
= −dU

dx
⇒ m

dv

dt
+
dU

dx
= 0

multiply by dx
dt and use the identity d

dt

[
1
2v

2

]
= v dvdt :

m
dx

dt

dv

dt
+
dx

dt

dU

dx
= 0 ⇒ d

dt

[
1

2
mv2

]
+
dU

dt
= 0 ⇒ d

dt

[
1

2
mv2 + U

]
= 0 ⇒ dE

dt
= 0.

Once more we have derived that the energy is constant for a system with a net-force which is
conservative. Note that as time evolves the expression E(x, v) = 1

2mv
2 + U(x) is invariant. It

follows that the motion of the system is in described by an energy-level curve in the xv-plane.
This plane is commonly called the phase plane in physics literature. Much information can be
gleaned about the possible motions of a system by studying the energy level curves in the phase
plane. I’ll return to that topic later in the course.

We now turn to a mass m for which the net-force is of the form F (x, v) = −dU
dx ∓ b|v|

n. Here we
insist that − is given for v > 0 whereas the + is given for the case v < 0 since we assume b > 0 and
this friction force ought to point opposite the direction of motion. Once more consider Newton’s
Second Law:

m
dv

dt
= −dU

dx
∓ bvn ⇒ m

dv

dt
− dU

dx
= ∓b|v|n

multiply by the velocity and use the identity as we did in the conservative case:

m
dx

dt

dv

dt
− dx

dt

dU

dx
= ∓bv|v|n ⇒ d

dt

[
1

2
mv2 + U

]
= ∓bv|v|n ⇒ dE

dt
= ∓bv|v|n.

The friction force reduces the energy. For example, if n = 1 then we have dE
dt = −bv2.

Remark 6.1.

The concept of energy is implicit within Example 5.9. I should also mention that the trick
of multiplying by the velocity to reveal a conservation law is used again and again in the
junior-level classical mechanics course.

6.2 Applications

Example 6.2. Problem: Suppose x is the position of a mass undergoing one-dimensional, con-
stant acceleration motion. You are given that initially we have velocity vo at position xo and later
we have velocity vf at position xf . Find how the initial and final velocities and positions are related.

Solution: recall that a = dv
dt but, by the chain-rule we can write a = dx

dt
dv
dx = v dvdx . We are given

that a is a constant. Separate variables, and integrate with respect to the given data

a =
dx

dt

dv

dx
= v

dv

dx
⇒ a dx = v dv ⇒

∫ xf

xo

a dx =

∫ vf

vo

v dv ⇒ a(xf − xo) =
1

2

(
v2f − v2o

)
.

Therefore, v2f = v2o + 2a(xf − xo) . I hope you recognize this equation from physics.
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Example 6.3. Problem: suppose the population P grows at a rate which is directly proportional
to the population. Let k be the proportionality constant. Find the population at time t in terms of
the initial population Po.

Solution: the given problem translates into the differential equation dP
dt = kP with P (0) = Po.

Seperate variables and integrate, note P > 0 so I drop the absolute value bars in the integral,

dP

dt
= kP ⇒

∫
dP

P
=

∫
k dt ⇒ ln(P (t)) = kt+ C

Apply the initial condition; ln(P (0)) = k(0) + C hence C = ln(Po). Consequently ln(P (t)) =

ln(Po) + kt. Exponentiate to derive P (t) = Poe
kt .

In the example above I have in mind k > 0, but if we allow k < 0 that models exponential population
decline. Or, if we think of P as the number of radioactive particles then the same mathematics for
k < 0 models radioactive decay.

Example 6.4. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across a capacitor C depends on the charge
Q according to C = Q/V (this is actually the definition of capacitance). If we connect R and C
end-to-end making a loop then they are in parallel hence share the same voltage: IR = Q

C . As time

goes on the charge on C flows off the capacitor and through the resistor. It follows that I = −dQ
dt .

If the capacitor initially has charge Qo then find Q(t) and I(t) for the discharging capacitor

Solution: We must solve

−RdQ
dt

=
Q

C

Separate variables, integrate, apply Q(0) = Qo:

dQ

Q
= − dt

RC
⇒ ln |Q| = − t

RC
+ c1 ⇒ Q(t) = ±ec1e−t/RC ⇒ Q(t) = Qoe

−t/RC

Another application of first order differential equations is simply to search for curves with particular
properties. The next example illustrates that concept.

Example 6.5. Problem: find a family of curves which are increasing whenever y < −2 or y > 2
and are decreasing whenever −2 < y < 2.

Solution: while many examples exist, the simplest example is one for which the derivative is
quadratic in y. Think about the quadratic (y+ 2)(y− 2). This expression is positive for |y| > 2 and
negative for |y| < 2. It follows that solutions to the differential equation dy

dx = (y + 2)(y − 2) will
have the desired properties. Note that y = ±2 are exceptional solutions for the give DEqn. Proceed

18



by separation of variables, recall the technique of partial fractions,

dy

(y + 2)(y − 2)
= dx ⇒

∫ [
1

4(y − 2)
− 1

4(y + 2)

]
dy =

∫
dx ?

⇒ ln |y − 2| − ln |y + 2| = 4x+ C

⇒ ln

∣∣∣∣y − 2

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣y + 2

y + 2
− 4

y + 2

∣∣∣∣ = 4x+ C

⇒ ln

∣∣∣∣1− 4

y + 2

∣∣∣∣ = 4x+ C

⇒
∣∣∣∣1− 4

y + 2

∣∣∣∣ = e4x+C = eCe4x

⇒ 1− 4

y + 2
= ±eCe4x = Ke4x

⇒ 1

y + 2
=

1−Ke4x

4

⇒ y = −2 +
4

1−Ke4x
, for K 6= 0.

It is neat that K = 0 returns the exceptional solution y = 2 whereas the other exceptional solution
is lost since we have division by y + 2 in the calculation above. If we had multiplied ? by −1 then
the tables would turn and we would recover y = −2 in the general formula.

The plot of the solutions below was prepared with pplane which is a feature of Matlab as I discussed
earlier in this article.

If you study the solutions in the previous example you’ll find that all solutions tend to either y = 2
or y = −2 in some limit. You can also show that all the solutions which cross the x-axis have
inflection points at their x-intercept. We can derive that from the differential equation directly:

dy

dx
= (y + 2)(y − 2) = y2 − 4 ⇒ d2y

dx2
= 2y

dy

dx
= 2y(y + 2)(y − 2).

We can easily reason when solutions have y > 2 or −2 < y < 0 they are concave up whereas
solutions with 0 < y < 2 or y < −2 are concave down. It follows that a solution crossing y = 0,−2
or 2 is at a point of inflection. Careful study of the solutions show that solutions do not cross
y = −2 or y = 2 thus only y = 0 has solutions with genuine points of inflection.
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Example 6.6. Problem: suppose you are given a family S of curves which satisfy dy
dx = f(x, y).

Find a differential equation for a family of curves which are orthogonal to the given set of curves.
In other words, find a differential equation whose solution consists of curves S⊥ whose tangent
vectors are perpendicular to the tangent vectors of curves in S at points of intersection.

Solution: Consider a point (xo, yo), note that the solution to dy
dx = f(x, y) has slope f(xo, yo)

at that point. The perpendicular to the tangent has slope −1/f(xo, yo). Thus, we should use the
differential equation dy

dx = − 1
f(x,y) to obtain orthogonal trajectories.

Let me give a concrete example of orthogonal trajectories:

Example 6.7. Problem: find orthogonal trajectories of xdx+ ydy = 0.

Solution: we find dy
dx = −x

y hence the orthogonal trajectories are found in the solution set of
dy
dx = −y

x . Separate variables to obtain:

dy

y
=
dx

x
⇒ ln |y| = ln |x|+ C ⇒ y = ±eCx.

In other words, the orthogonal trajectories are lines through the origin y = kx. Technically, by our
derivation, we ought not allow k = 0 but when you understand the solutions of xdx+ ydy = 0 are
simply circles x2 + y2 = R2 it is clear that y = 0 is indeed an orthogonal trajectory.

Example 6.8. Problem: find orthogonal trajectories of x2 − y2 = 1.

Solution: observe that the hyperbola above is a solution of the differential equation 2x− 2y dydx = 0

hence dy
dx = x

y . Orthogonal trajectories are found from dy
dx = −y

x . Separate variables,

dy

y
=
−dx
x

⇒ ln |y| = − ln |x|+ C ⇒ y = k/x.

Once more, the case k = 0 is exceptional, but it is clear that y = 0 is an orthogonal trajectory of
the given hyperbola.

Orthogonal trajectories are important to the theory of electrostatics. The field lines which are
integral curves of the electric field form orthogonal trajectories to the equpotential curves. Or, in
the study of heatflow, the isothermal curves are orthgonal to the curves which line-up with the flow
of heat.
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Example 6.9. Problem: Suppose the force of friction on a speeding car is given by Ff = −bv2.
If the car has mass m and initial speed vo and position xo then find the velocity and position as a
function of t as the car glides to a stop. Assume that the net-force is the friction force since the
normal force and gravity cancel.

Solution: by Newton’s second law we have mdv
dt = −bv2. Separate variables, integrate. apply

initital condition,

dv

v2
= −bdt

m
⇒ −1

v
=
−bt
m

+ c1 ⇒ −1

vo
=
−b(0)

m
+ c1 ⇒ c1 =

−1

vo

Thus,
1

v(t)
=
bt

m
+

1

vo
⇒ v(t) =

1
bt
m + 1

vo

⇒ v(t) =
vo

btvo
m + 1

.

Since v = dx
dt we can integrate the velocity to find the position

x(t) = c1 +
m

b
ln

∣∣∣∣1 +
bvot

m

∣∣∣∣ ⇒ x(0) = c1 + ln(1) = xo ⇒ x(t) = xo +
m

b
ln

∣∣∣∣1 +
bvot

m

∣∣∣∣ .
Notice the slightly counter-intuitive nature of this solution, the position is unbounded even though
the velocity tends to zero. Common sense might tell you that if the car slows to zero for large time
then the total distance covered must be finite. Well, common sense fails, math wins. The point is
that the velocity actually goes too zero too slowly to give bounded motion.

Example 6.10. Problem: Newton’s Law of Cooling states that the change in temperature T for
an object is proportional to the difference between the ambient temperature R and T ; in particular:
dT
dt = −k(T − R) for some constant k and R is the room-temperature. Suppose that T (0) = 150
and T (1) = 120 if R = 70, find T (t)

Solution: To begin let us examine the differential equation for arbitrary k and R,

dT

dt
= −k(T −R) ⇒ dT

dt
+ kT = kR

Identify that p = k hence I = ekt and we find

ekt
dT

dt
+ kektT = kektR ⇒ d

dt

[
ektT

]
= kektR ⇒ ektT = Rekt +C ⇒ T (t) = R+ Ce−kt.

Now we may apply the given data to find both C and k, we already know R = 70 from the problem
statement;

T (0) = 70 + C = 150 & T (1) = 70 + Ce−k = 120

Hence C = 80 which implies e−k = 5/8 thus ek = 8/5 and k = ln(8/5). Therefore,

T (t) = 70 + 80et ln(5/8) . To understand this solution note that ln(5/8) < 0 hence the term

80et ln(5/8) → 0 as t→∞ hence T (t)→ 70 as t→∞. After a long time, Newton’s Law of Cooling
predicts objects will assume room temperature.
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Example 6.11. Suppose you decide to have coffee with a friend and you both get your coffee ten
minutes before the end of a serious presentation by your petty boss who will be offended if you start
drinking during his fascinating talk on maximal efficiencies for production of widgets. You both
desire to drink your coffee with the same amount of cream and you both like the coffee as hot as
possible. Your friend puts the creamer in immediately and waits quitely for the talk to end. You
on the other hand think you wait to put the cream in at the end of talk. Who has hotter coffee and
why? Discuss.

Example 6.12. Problem: the voltage dropped across a resistor R is given by the product of R
and the current I through R. The voltage dropped across an inductor L depends on the change in
the current according to LdIdt . An inductor resists a change in current whereas a resistor just resists
current. If we connect R and L in series with a voltage source E then the Kirchoff’s voltage law
yields the differential equation

E − IR− LdI
dt

= 0

Given that I(0) = Io find I(t) for the circuit.

Solution: Identify that this is a linear DE with independent variable t,

dI

dt
+
R

L
I =
E
L

The integrating factor is simply µ = e
Rt
L (using I here would be a poor notation). Multiplying the

DEqn above by µ to obtain,

e
Rt
L
dI

dt
+
R

L
e
Rt
L I =

E
L
e
Rt
L ⇒ d

dt

[
e
Rt
L I
]

=
E
L
e
Rt
L

Introduce a dummy variable of integration τ and integrate from τ = 0 to τ = t,∫ t

0

d

dτ

[
e
Rτ
L I
]
dτ =

∫ t

0

E
L
e
Rτ
L dτ ⇒ e

Rt
L I(t)− Io =

∫ t

0

E
L
e
Rτ
L dτ.

Therefore, I(t) = Ioe
−Rt
L + e

−Rt
L

∫ t
0
E
Le

Rτ
L dτ . If the voltage source is constant then E(t) = Eo for all

t and the solution yields to I(t) = Ioe
−Rt
L + e

−Rt
L
Eo
L
L
R

(
e
Rt
L − 1

)
which simplifies to

I(t) =

[
Io −

Eo
R

]
e

−Rt
L +

Eo
R
.

The steady-state current found from letting t → ∞ where we find I(t) → Eo
R . After a long time

it is approximately correct to say the inductor is just a short-circuit. What happens is that as the
current changes in the inductor a magnetic field is built up. The magnetic field contains energy
and the maximum energy that can be stored in the field is governed by the voltage source. So,
after a while, the field is approximately maximal and all the voltage is dropped across the resistor.
You could think of it like saving money in a piggy-bank which cannot fit more than Eo dollars. If
every week you get an allowance then eventually you have no choice but to spend the money if the
piggy-bank is full and there is no other way to save.
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Example 6.13. Problem: Suppose a tank of salty water has 15kg of salt disolved in 1000L of wa-
ter at time t = 0. Furthermore, assume pure water enters the tank at a rate of 10L/min and salty
water drains out at a rate of 10L/min. If y(t) is the number of kg of salt at time t then find y(t)
for t > 0. Also, how much salt is left in the tank when t = 20 (minutes). We suppose that this tank
is arranged such that the concentration of salt is constant throughout the liquid in this mixing tank.

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. However, this problem only has a
nonzero out-rate: Rout = 10L

min
y

1000L = y
100min . We omit the ”min” in the math below as we assume

t is in minutes,

dy

dt
= − y

100
⇒ dy

y
= − dt

100
⇒ ln |y| = − t

100
+ C ⇒ y(t) = ke−

t
100 .

However, we are given that y(0) = 15 hence k = 15 and we find3:

y(t) = 15e−0.01t.

Evaluating at t = 20min yields y(20) = 12.28 kg.

Example 6.14. Problem: Suppose a water tank has 100L of pure water at time t = 0. Suppose
salty water with a concentration of 1.5kg of salt per L enters the tank at a rate of 8L/min and gets
quickly mixed with the initially pure water. There is a drain in the tank where water drains out
at a rate of 6L/min. If y(t) is the number of kg of salt at time t then find y(t) for t > 0. If the
water tank has a maximum capacity of 1000L then what are the physically reasonable values for the
solution? For what t does your solution cease to be reasonable?

Solution: Generally when we work such a problem we are interested in the rate of salt enetering
the tank and the rate of salt exiting the tank ; dy

dt = Rin − Rout. The input-rate is constant and is
easily found from multiplying the given concentration by the flow-rate:

Rin =
1.5 kg

L

8L

min
=

12 kg

min

notice how the units help us verify we are setting-up the model wisely. That said, I omit them in
what follows to reduce clutter for the math. The output-rate is given by the product of the flow-rate
6L/min and the salt-concentration y(t)/V (t) where V (t) is the volume of water in L at time t.
Notice that the V (t) is given by V (t) = 100 + 2t for the given flow-rates, each minute the volume
increases by 2L. We find (in units of kg and min):

Rout =
6y

100 + 2t

Therefore, we must solve:

dy

dt
= 12− 6y

100 + 2t
⇒ dy

dt
+

3dt

50 + t
y = 12.

This is a linear ODE, we can solve it by the integrating factor method.

I(t) = exp

(∫
3dt

50 + t

)
= exp

(
3 ln(50 + t)

)
= (50 + t)3.

3to be physically explicit, y(t) = (15kg)exp(−0.01t
min

), but the units clutter the math here so we omit them
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Multiplying by I yields:

(50 + t)3
dy

dt
+ 3(50 + t)2y = 12(50 + t)3 ⇒ d

dt

[
(50 + t)3y

]
= 12(50 + t)3

Integrating yields (50 + t)3y(t) = 3(50 + t)4 + C hence y(t) = 3(50 + t) + C
(50+t)3

. The water is

initially pure thus y(0) = 0 thus 0 = 150 + C/503 which gives C = −150(50)3. The solution is4

y(t) = 3(50 + t)− 150

(
50

50 + t

)3

Observe that V (t) ≤ 1000L thus we need 100 + 2t ≤ 1000 which gives t ≤ 450. The solution is only
appropriate physically for 0 ≤ t ≤ 450.

Example 6.15. Problem: suppose the population P grows at a rate which is directly proportional
to the population. Let k1 be the proportionality constant for the growth rate. Suppose further that
as the population grows the death-rate is proportional to the square of the population. Suppose k2 is
the proportionality constant for the death-rate. Find the population at time t in terms of the initial
population Po.

Solution: the given problem translates into the IVP of dP
dt = k1P −k2P 2 with P (0) = Po. Observe

that k1P − k2P 2 = k1P (1− k2P/k1). Introduce C = k1/k2). Separate variables:

dP

P (1− P/C)
= k1dt

Recall the technique of partial fractions:

1

P (1− P/C)
=

−C
P (P − C)

=
A

P
+

B

P − C
⇒ −C = A(P − C) +BP

Set P = 0 to obtain −C = −AC hence A = 1 and set P = C to obtain −C = BC hence B = −1
and we find: ∫ [

1

P
− 1

P − C

]
dP = k1dt ⇒ ln |P | − ln |P − C| = k1t+ c1

It follows that letting c2 = ec1 and c3 = ±c2∣∣∣∣ P

P − C

∣∣∣∣ = c2e
k1t ⇒ P = (P − C)c3e

k1t

hence, P [1− c3ek1t] = −c3Cek1t

P (t) =
c3Ce

k1t

c3ek1t − 1
⇒ P (t) =

C

1− c4e−k1t

where I let c4 = 1/c3 for convenience. Let us work on writing this general solution in-terms of the
initial population P (0) = Po:

Po =
C

1− c4
⇒ Po(1− c4) = C ⇒ Po − C = Poc4 ⇒ c4 =

Po − C
Po

.

4following the formatting of Example 7 of § 2.7 of Rice & Strange’s Ordinary Differential Equations with Appli-
cations
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This yields,

P (t) =
C

1− Po−C
Po

e−k1t
⇒ P (t) = C

[
Po

Po − [Po − C]e−k1t

]
The quantity C is called the carrying capacity for the system. As we defined it here it is given
by the quotient of the birth-rate and death-rate constants C = k1/k2. Notice that as t → ∞ we
find P (t) → C. If Po > C then the population decreases towards C whereas if Po < C then the
population increases towards C. If Po = C then we have a special solution where dP

dt = 0 for all t,
the equilbrium solution. A a bit of fun trivia, these models are notoriously incorrect for human
populations. For example, in 1920 a paper by R. Pearl and L. J. Reed found P (t) = 210

1+51.5e−0.03t .
The time t is the number of years past 1790 (t = 60 for 1850 for example). As discussed in Ritger
and Rose page 85 this formula does quite well for 1950 where is well-approximates the population
as 151 million. However, the carrying capacity of 210 million people is not even close to correct.
Why? Because there are many factors which influence population which are simply not known.
The same problem exists for economic models. You can’t model game-changing events such as
an interfering government. It doesn’t flow from logic or optimal principles, political convenience
whether it benefits or hurts a given market cannot be factored in over a long-term. Natural disasters
also spoil our efforts to model populations and markets. That said, the exponential and logarthmic
population models are important to a wide-swath of reasonably isolated populations which are free
of chaotic events.

Example 6.16. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
rate at which the mass increases is proportional to the mass; dm

dt = km for some constant k > 0.
Find the equation of the velocity for the drop.

Solution: Newton’s equation is −mg = dp
dt . This follows from the assumption that, on average,

there is no net-momentum of the water vapor which adheres to the raindrop thus the momentum
change is all from the gravitational force. Since p = mv the product rule gives:

−mg =
dm

dt
v +m

dv

dt
⇒ −mg = kmv +m

dv

dt

Consequently, dividing by m and applying the integrating factor method gives:

dv

dt
+ kv = −g ⇒ ekt

dv

dt
+ kektv = −gekt ⇒ d

dt

[
ektv

]
= −gekt

Integrate to obtain ektv = −g
k e

kt +C from which it follows v(t) = −g
k

+ Ce−kt. Consider the limit

t → ∞, we find v∞(t) = − g
k . This is called the terminal velocity. Physically this is a very

natural result; the velocity is constant when the forces balance. There are two forces at work here
(1.) gravity −mg and (2.) water friction −kmv and we look at

m
dv

dt
= −mg − kmv

If v = − g
k then you obtain ma = 0. You might question if we should call the term −kmv a ”force”.

Is it really a force? In any event, you might note we can find the terminal velocity without solving
the DEqn, we just have to look for an equilbrium of the forces.
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Not all falling objects have a terminal velocity... well, at least if you believe the following example.
To be honest, I’m not so sure it is very physical. I would be interested in your thoughts on the
analysis if your thoughts happen to differ from my own.

Example 6.17. Problem: Suppose a raindrop falls through a cloud and gathers water from the
cloud as it drops towards the ground. Suppose the mass of the raindrop is m and the suppose the
drop is spherical and the rate at which the mass adheres to the drop is proportional to the cross-
sectional area relative the vertical drop (dmdt = kπR2). Find the equation of the velocity for the drop.

Solution: we should assume the water in the could is motionless hence the water collected from
cloud does not impart momentum directly to the raindrop. It follows that Newton’s Law is −mg = dp

dt
where the momentum is given by p = mv and v = ẏ and y is the distance from the ground. The
mass m is a function of time. However, the density of water is constant at ρ = 1000kg/m3 hence
we can relate the mass m to the volume V = 4

3πR
3 we have

ρ =
4πR3

3m

Solve for R2,

R2 =

[
3ρm

4π

]2/3
As the drop falls the rate of water collected should be proportional to the cross-sectional area πR2

the drop presents to cloud. It follows that:

dm

dt
= km2/3

Newton’s Second Law for varying mass,

−mg =
d

dt

[
mv
]

=
dm

dt
v +m

dv

dt
= km2/3v +m

dv

dt

This is a linear ODE in velocity,
dv

dt
+

(
k

m1/3

)
v = −g

We should find the mass as a function of time,

dm

dt
= km2/3 ⇒ dm

m2/3
= kdt ⇒ 3m1/3 = kt+ C1 ⇒ m =

1
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[
kt+ C1

]3
where mo is the initial mass of the droplet.

dv

dt
+

3kv

kt+ C1
= −g

The integrating factor is found from integrating the coefficient of v,

I = exp

[∫
3kdt

kt+ C1

]
= exp

[
3 ln(kt+ C1)

]
= (kt+ C1)

3

Hence,

(kt+ C1)
3dv

dt
+ 3(kt+ C1)

2v = −g(kt+ C1)
3 ⇒ d

dt

[
(kt+ C1)

3v

]
= −g(kt+ C1)

3
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Hence v(t) = −gt
4
− C3 + C2/(kt+ C1)

3. The constants C1, C2, C3 have to do with the geometry

of the drop, its initial mass and its initial velocity. Suppose t = 0 marks the intiial formation of
the raindrop, it is interesting to consider the case t→∞, we find

v∞(t) = −gt
4
− C3

which says that the drop accelerates at approximately constant acceleration −g/4 as it falls through
the cloud. There is no terminal velocity in contrast to the previous example. You can integrate
v(t) = dy

dt to find the equation of motion for y.

Example 6.18. Problem: Rocket flight. Rockets fly by ejecting mass with momentum to form
thrust. We analyze the upward motion of a vertically launched rocket in this example. In this case
Netwon’s Second Law takes the form:

d

dt

[
mv

]
= Fexternal + Fthrust

the external force could include gravity as well as friction and the thrust arises from conservation
of momentum. Suppose the rocket expells gas downward at speed u relative the rocket. Suppose that
the rocket burns mass at a uniform rate m(t) = mo − αt and find the resulting equation of motion.
Assume air friction is neglible.

Solution: If the rocket has velocity v then the expelled gas has velocity v − u relative the ground’s
frame of reference. It follows that:

Fthrust = (v − u)
dm

dt

Since Fexternal = −mg and dm
dt = −α we must solve

d

dt

[
mv

]
= −mg + (v − u)

dm

dt
⇒ dm

dt
v +m

dv

dt
= −mg + v

dm

dt
− udm

dt

Thus,

m
dv

dt
= −udm

dt
−mg

Suppose, as was given, that m(t) = mo − αt hence dm
dt = −α

(mo − αt)
dv

dt
= αu− (mo − αt)g ⇒ dv

dt
=

αu

mo − αt
− g

We can solve by integration: assume v(0) = 0 as is physically reasonable,

v(t) = −u ln(mo − αt) + u ln(mo)− gt = −u ln

(
1− αt

mo

)
− gt.

The initial mass mo consists of fuel and the rocket itself: mo = mf + mr. This model is only
physical for time t such that mr ≤ mf + mr − αt hence 0 ≤ t ≤ mf/α. Once the fuel is finished
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the empty rocket completes the flight by projectile motion. You can integrate v = dy/dt to find the
equation of motion. In particular:

y(t) =

∫ t

0

[
−u ln(mo − ατ) + u ln(mo)− gτ

]
dτ (1)

=

(
−u
α

[
(ατ −mo) ln(mo − ατ)− ατ

]
+ uτ ln(mo)−

1

2
gτ2
)∣∣∣∣t

0

= −u
α

[
(αt−mo) ln(mo − αt)− αt

]
+ ut ln(mo)−

1

2
gt2 − mou

α
ln(mo)

= ut− 1

2
gt2 − umo

α

(
1− αt

mo

)
ln

(
1− αt

mo

)

Suppose −
∫ mf

α
0 u ln

(
1− αt

mo

)
dt = A then y(t) = A− 1

2g

(
t− mf

α

)2

for t >
mf
α as the rocket freefalls

back to earth having exhausted its fuel.

Technically, if the rocket flies more than a few miles vertically then we ought to use the variable
force of gravity which correctly accounts for the weaking of the gravitational force with increasing
altitude. Mostly this example is included to show how variable mass with momentum transfer is
handled.

Other interesting applications include chemical reactions, radioactive decay, blood-flow, other pop-
ulation models, dozens if not hundreds of modifications of the physics examples we’ve considered,
rumor propogation, etc... the math here is likely found in any discipline which uses math to
quantiatively describe variables.
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