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1 Euclidean Space

We denote the real numbers as R = R'. Naturally R is identified with a line as we are taught in our
previous study of the number line. The Cartesian products of R with itself give us natural models
for the plane, 3 dimensional space and more abstractlyEl n-dimensional space:

Definition 1.1. Space is a collection of points:

(1.) two-dimensional space: is the set of all ordered pairs of real numbers:
R?=RxR={(z,y) | z,y € R}
(2.) three-dimensional space: is the set of all ordered triples of real numbers:
R =R xR xR={(z,y,2) | z,y,2 € R}

(3.) n-dimensional space: is the set of all ordered n-tuples of real numbers:

R"=RXRx--- xR={(z1,22,...,25) | z; €R for each j € N,}

n copies

We say (x,%) is a point in R?. Likewise, (x,v,2) is a point in R?
and (z1,...,x,) is a point in R™.

The word ordered indicates points are equal if and only if each and every entry in the point match.
Example 1.2. Note that (1,1,2) # (1,1,3) since 2 # 3.
Example 1.3. If (1,2,3,4) = (a,b,c,d) thena=1,b=2,c=3 and d = 4.

Conceptually, a point is something without any finite extent, it has no width, length or height. We
characterize each point in terms of its components:

Ipicturing R* is something we do with algebra rather than direct spatial intuition. Most people only have spatial
intuition in two or three dimensions.



Definition 1.4. point equality, components.

In particular, (vy,va,...,v,) = (W1, wa,...,wy) iff v = w1, vo = we, ..., v, = wy.

In

the context of R? we say a is the x-component of (a,b) whereas b is the y-component
of (a,b). In the context of R® we say a is the x-component of (a,b,c) whereas b is the
y-component of (a,b,c) and c is the z-component of (a,b,c). Generally, we say v; the

j-th component of (vy,va,...,v,).

Sometimes the term euclidean is added to emphasize that we suppose distance between points
is measured in the usual manner. Recall that in the one-dimensional case the distance between
x,y € R is given by the absolute value function; d(x,y) = |y — x| = \/(y — x)?. We define distance

in n-dimensions by similar formulas:

Definition 1.5. euclidean distance.

then the distance between points p; and po is

d(p1,p2) = /(22 — 1)2 + (2 — y1)*-

(72,72, z2) € R3 then the distance between points p; and py is

d(p1,p2) = \/(952 —21)? 4+ (y2 —y1)? + (22 — 21)%

and b = (by,bo,...,b,) then the distance between points a and point b is

n

(3.) distance in n-dimensional euclidean space: if a,b € R" where a = (a1, ag, . . .

d(av b) =
=il

Z(bj - aj)2 = \/(bl - a1)2 + (bQ - a2>2 P ocoaF (bn - an)Z-

(1.) distance in two-dimensional euclidean space: if p; = (21,1),p2 = (72,%2) € R?

(2.) distance in three-dimensional euclidean space: if p; = (r1,91,21),p2 =

7an)

It is simple to verify that the definition above squares with our traditional ideas about distance from
previous math courses. In particular, notice these follow from the Pythagorean theorem applied to
appropriate triangles. The picture below shows the three dimensional distance formula is consistent

with the two dimensional formula.




2 Vectors in Two or Three Dimensions

—
The directed line-segment from P; to P, is denoted PP, in the above diagram. Directed line-
segments are called vectors. In contrast to points, a nonzero directed line-segment has an extent
in one-direction.

Definition 2.1. Two Dimensional Vectors:

If P= (P, P,) and Q = (Q1,Q2) then F@ is the vector from P to @ given by:

PO=Q—-P=(Qi—P,Qs— P)

If P = (P, P») then P= (Py, Py); we write ? for the vector from the origin to the point P.
The arrow notation is used to emphasize the object is a directed-line segment. If ¥ = (vy, va)
and @ = (wy, we) then we define addition and scalar multiplication by ¢ € R as follows:

U+ W = (v1 + w1, v2 + wa), & et = (cvy, cvg).

Furthermore, the length or magnitude of the vector ¥ = (vy,v3) is defined by:

o1l = v = /2 + 3.

If ¥ 2 0 then v = %17 and we call v the direction-vector or unit-vector of 7.

Notice ¥ # 0 can be written as the product of its magnitude and direction; v = v0. Moreover, our
definition of vector length makes the length of ]@ simply the distance from P to Q.

Example 2.2. If P = (—2,4) and Q = (8,7) then ]@ = (8—(—2),7—4) = (10, 3). The magnitude
||Pﬁ|| =+/10% + 32 = /109 is the distance from P to Q.
Example 2.3. Let A = (1,3) and B = (—1,0) then
A+B=(1,3)+(-1,0) = (1 —1,3+0) = (0,3).
We find magnitudes A = V12 +32 =+/10 and B = \/m = /1= 1. Thus unit-vectors in

the A and B directions are given by:

A-Li-Lusm-anisvio & B-

o



Example 2.4. Let A= (3,4) then ||A|| = V32 + 42 = v/25 = 5. Therefore, A = £(3,4).

Example 2.5. Find a vector B with length 7 and the same direction as A = (1,1). Observe

A= %(1,1) hence B = BB = £<1»1>-

The solution given in the preceding example is geometrically motivated. An alternative algebraic
approach would be to solve B = kA and B = 7 for k. Both approaches have merit. I used the
geometric approach to induce insight for the direction vector concept.

There is a natural correspondence between points and directed line-segments from the origin.
v

(wy,wy)
[ Often in applications we make an
\ indentification of the vectors based
at the origin and points. In this
view the vectors pictured are the
"same" as the points to which they
point.

(v1,v2)

= <wh U/‘2> \

Y = <01=U2>

We will use the notation p for vectors throughout the remainder of these notes to emphasize the
fact that p'is a vector. Some texts use bold to denote vectors, but I prefer the over-arrow notation
which is easily duplicated in hand-written work.

We add vectors geometrically by the tip-to-tail method as illustrated below.

i This illustrates the "tip-to-tail" or
"head to tail" method to
graphically add vectors. The sum

= <w - > of the two red vectors gives the
12/ resultant green vector.

vt = <U1 4wy, v, + w~2> \

7 = <U17 ’Ug>




Also, we rescale them by shrinking or stretching their length by a scalar multiple:

Scalar Multiplication by ? I
C1 /
c1 >0

C2<0

In the diagram below we illustrate the geometry behind the vector equation R=A+B+C+D.

D

P
0y

@l

—

A

Continuing in this way we can add any finite number of vectors in the same tip-2-tail fashion. I used
R in the diagram above because physicists often call the result of a vector addition the resultant

vector.

It is sometimes useful to see how A and B are connected by the vector B— A

i 4

B-A

o]

A g
R

-,

Notice that A + (E —A) = B by the tip-2-tail diagram above.



In most applications of vectors we are free to move a given vector around the plane in such a way
that we maintain its direction and length:

Usually in applications we can
move the vectors around. In this

view the vectors pictured are all
the "same" vector. /

If we wish to keep track of the base point of vectors then additional comment is required. I think
of vectors as based at the origin unless there is reason from the context to think of them based
elsewhere. For example, if I think about a force applied to a lever arm then I imagine the force as
acting on its point of application.

I have mostly emphasized two-dimensional vectors up to this point, but we can easily extend the
discussion to three-dimensional vectors.

Definition 2.6. Three Dimensional Vectors:

If P= (P, P, P3) and Q = (Q1,Q2,Q3) then 1@ is the vector from P to Q) given by:
PO=Q-P= (Q1— P1,Q2 — P»,Q3 — P)

If P= (P, P, Ps3) then P = (P1, Py, P3); we write ? for the vector from the origin to the
point P. The arrow notation is used to emphasize the object is a directed-line segment. If
U = (v1,v2,v3) and W = (wy, w2, ws3) then we define addition and scalar multiplication
by ¢ € R as follows:

U+ W = (v1 + wy, v2 + wa, v3 + w3), & et = {(cvy, cvg, cus).

Furthermore, the length or magnitude of the vector ¥ = (v1,va, v3) is defined by:

|9]] = v = y/v? + 03 + v3.

If ¥ # 0 then v = %)17 and we call © the direction-vector or unit-vector of .

The example below illustrates a nice trick for constructing vectors.

Example 2.7. If A= (1,2,-2) then A= \/12+ 22+ (=2)2 = /9 = 3 thus A = (1/3,2/3,-2/3).
If you want to construct a vector B of length 18 in the direction offf then simply use B =184 =
18(1/3,2/3,-2/3) = (6,12, —12).



3 Decomposing Vectors into Components
For R2, deﬁneﬂ z=(1,0) and y = (0,1) hence:

(a,b) = (a,0)+ (0,b)
a(1,0) + 6(0,1)
= ar+ by

Definition 3.1. vector and scalar components of two-vectors.

The vector component of (a,b) in the z-direction is simply a Z whereas the vector com-
ponent of (a, b) in the y-direction is simply by. In contrast, a, b are the scalar components
of (a,b) in the z,y-directions respective.

Scalar components are scalars whereas vector components are vectors. These are entirely different
objects if n # 1, please keep clear this distinction in your mind. Notice that the vector components
are what we use to reproduce a given vector by the tip-to-tail sum:
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Example 3.2. Let ¥ = (2, —3) then 2 is the x-vector component of U and 2 is the scalar component
of U in the x-direction. Likewise, —37 1is the y-vector component of U.

Example 3.3. Problem: find a vector A of length 10 which has 6 T as its x-vector component.
Solution: we seek to find y such that A = (6,y) has length 10. Notice A?> = 6 + y*> = 10? hence
y? = 64 which gives y = £8. We find two vectors which solve this problem, A = (6, £8).

For R? we define the following notatiorﬂ z=(1,0,0), y=(0,1,0), and z = (0,0,1) hence:

(a,b,c) = (a,0,0)+ (0,b,0) + (0,0,¢)
a(1,0,0) + b(0,1,0) + ¢(0,0,1)
= aZ+ by+ cZ

2] should mention that often 7 is used for 7 and 3 is used for 7, I choose this less popular notation because it is far
more descriptive than the traditional notation, I trust the reader can adapt in future studies if need be. Incidentially,
another popular notation in linear algebra is that e; = (1,0) and ez = (0,1) in the context of RZ.

3yes, in the context of R® we have Z = T=e = (1,0,0) whereas y = 3'\: e2 =(0,1,0) and z = k=es= (0,0,1),
notice the number of zeros depends on the context.
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Definition 3.4. vector and scalar components of three-vectors.

The vector components of (a,b,c) are: aZ in the z-direction, by in the y-direction and
¢z in the z-direction. In contrast, a,b,c are the scalar components of (a,b,c) in the
x,y, z-directions respective.

Example 3.5. Observe, (1,2,3) = (1,0,0) 4+ (0,2,0) + (0,0,3) = T+ 2y + 3Z.

Example 3.6. Problem: find a vector A of length 5 which has 27 as its y-vector component and
—37Z as its z-vector component.

Solution: we seek to find x such that A = (z,2,—3) has length 5. Notice A?> = 22422 +(—3)2 = 52
hence 22 = 12 which gives & = £v/12. We find two solutions A = (+y/12,2 — 3).

We conclude this section by discussing how trigonometry is often applied to the study of vectors
in the plane. It is not uncommon to be faced with vectors which are described by a length and a
direction in the plane. In such a case we need to rely on trigonometry to break-down the vector
into it’s Cartesian components.

v sin(6)

Example 3.7. Suppose a vector v has a length v =5 at 6 = 7/3 then vcosf = 5cos(m/3) = 5 and

. 5 5\/§>

vsinf = 5sin(7/3) = % Therefore, in view of the diagram above this example, T = <2, —

v sin(6)




Example 3.8. Suppose a vector ¥ has a length v = 2 at @ = 57/6 then vcos = 2cos(57/6) = —/3
and vsin@ = 2sin(57/6) = 1. Therefore, T = (—+/3,1). Notice, 6 = 5n/6 is in Quadrant II and
our result is consistent with the figure above.

In general, for ¥ = (v1,v2) # 0 we can describe ¥ in terms of its magnitude v = /v + v5 and
standard angle #. Place ¢ at the origin then we know from our discussion of polar coordinates that

v1 = vcost & vg = vsin

Consequently, v = (vcosf,vsinf) = v(cosf,sin ). However, we also know ¢ = v0 hence we find:

’@ = (cos 6, sin 0) ‘

Notice, ||(cos@,sin8)| = v/cos? +sin?# = /1 = 1. Thus, (cosf,sin ) is a unit-vector. Of course,
this should not be surprising since we began this course with the unit-circle which is nothing more
than the collection of all points a distance of one-unit from the origin. We already know (cos 6, sin #)
is a typical point on the unit-circle. Now we’re simply observing (cos f, sin #) is the vector of length
one which points from the origin to the point (cosf,sin9).

Example 3.9. Suppose U has length 37 and is directed at the standard angle § = 295°. Then the
unit-vector in the direction of U is simply 0 = (cos(295°),sin(295°)).

4 The Dot Product

The dot-product of two vectors gives a number which relates to whether the given pair of vectors
is parallel or perpendicular or somewhere in-between. We will soon discover that the dot-product
allows us an elegant algebraic means to calculate the angle between vectors in Euclidean spacdﬂ

Definition 4.1. dot product.

The dot-product is a useful operation on vectors. In R? we define,
<V1, V2> . <W1, W2> = Vlwl + VQWZ‘
In R3 we define,

(V1, Vo, Va) « (W1, Wo, W3) = VI, + VoW + VaWs.

It is important to notice that the dot-product takes in two wvectors and outputs a scalar. It has a
number of interesting properties which we will often use:

Example 4.2. Let A = (3,4) and B = (7,—2). We calculate,
AoB = (3,4)+(7,-2) = (3)(7) + (4)(~2) = 13.
Example 4.3. Let A = (1,2,3) and B =(1,-1,5). We calculate,

AeB=1(1,2,3)e(1,-1,5) =1—-2+415 = 14.

4711 limit our discussion to two or three dimensional vectors, but we can easily extend the discussion to R™ for
n>4



Proposition 4.4. properties of the dot-product.

let ff, 5, C € R" be vectors and ¢ € R
(1.) commutative: A« B = B+ A,
(2.) distributive: A+(B+C)=A+B

—

(3.) distributive: (A+ B)+C = A«C

!

(4.) scalars factor out: A-e
(5.) non-negative: A+ A >
(6.) no null-vectors: A+ A =0 iff A =0.

Proofs of the above claims are not difficult. Let me illustrate two for you:

Example 4.5. Why is A«B=RB+.A for two dimensional vectors ? Simple, notice that since real
numbers commute we can make the following calculation:

AeB = A1B) + AyBy = B1 Ay + ByAy = B+ A.
We find the dot-product is commutative.
Example 4.6. Why is A A>0 for three dimensional vectors ¢ Simple, notice that
AeA=AjA] + AgAy + A3Az = A2 + A2+ A2 >0

since the sum of squares of real numbers is non-negative.

Notice the formula in the example above is familar, we can write: | [|A|| = V A+ A|since [|A] = A =

VA2 + A3+ A%. Notice that the dot-product of a vector with itself is the square of the magnitude
of the vector; A« A = A2. This observation works in two or three dimension

Proposition 4.7. properties of the norm (also known as length of vector).

Suppose /T, BeR'and c e R,

(1.) absolute value of scalar factors out: |[cA|| = |c|||A]|,
(2.) triangle inequality: ||A + B|| < ||A|| + ||B]|,

(3.) Cauchy-Schwarz inequality: |4+ B| < ||A|| || B]|.

(4.) non-negative: ||A|| >0,

(5.) only zero vector has zero length: ||A|| =0 iff A = 0.

S0k, so to be honest, this concept works in far greater generality than just R? or R® or even R", we can look
at music in terms of its Fourier decomposition and a given musical note has a distance which can be understood in
terms of Pythagorean like formula which sums all the lengths of the harmonics forming the musical note.

10



Dot-products of the coordinate unit-vectors in R? are very easy to remember:

1, Fez=1,

<)
I

FeF=1, o

—0, gez=0.

)

Tey=0, To
We can calculate dot-products by using the properties of the dot-product paired with the results
above. For example:

—

Example 4.8. Let A= 7 2y+3Zand B=52+92
AeB=(T-27+32)+(T+972)
=522 —10ye T+ 1520 T+ 9T 2 —18Ye 2+ 272 2
= 5(1) = 10(0) 4 15(0) + 9(0) — 18(0) + 27(1)
= 32.

It is easier to use the (a, b, ¢) notation for examples such as the one above, but the notation z, y, z
(or the equivalent i, j, k used in many other texts) is often used to emphasize that the object in
consideration is a vector.

Definition 4.9. orthogonal vectors.

We say Ais orthogonal to Biff A« B =0. A set of vectors which is both orthogonal and
all of unit length is said to be an orthonormal set of vectors.

Orthonormality makes for nice formulas. Let V = (Vi,V3) € R?2 and calculate,
Ved= (V21 +Vok2)e B1 = ViZ1+ &1 + Valoe B1 = 611Vi + 012Vo = Wy
Vedy=(ViZ1+VaZa)e B = Vi Ty o To+ VaToe Ta = 612V4 + 022Va =V
This means we can use the dot-product to select the scalar components of a given vector.
V= (Ve@y, Vo) =( Ve )T+ (Veido)an

Let’s pause to make a connection to the standard angle 6 and the cartesian componentsﬁ

vsin(6) é

E vsin(f)

vcos(6)

Note that V = cos(6) Z + sin(0) § and V = ( Vel )T+ ( Ve ) 9. It follows that:

—

cos(f)=VeZ and  sin(d)=Vep.

You could use these equations to define the standard angle in retrospect. Alternatively, we can use
the standard angle for a two-dimensional vector to derive its unit-vector: observe

o~

A= (Acosf, Asin) = Alcosf, sinf) & A=AA = |A=/cosh, sinb)|

51 did discuss this earlier, but it probably doesn’t hurt to cover it again

11



Example 4.10. If ¥ has length 10 and 6 = —7/6 then D = (cos(/6), —sin(n/6)) = (3, F).

Notice, I did not need to use v = 10 to find the unit-vector in the ¥-direction. The standard angle
and the direction-vector are equivalent in the two-dimensional context.

%

Example 4.11. If ¥ has length 10 and 6 = —7/6 then D = (cos(/6), —sin(n/6)) = (33, Z).

4.1 Angle Measure via Dot Products

The study of geometry involves lengths and angles of shapes. We have all the tools we need to
define the angle # between nonzero vectors

Definition 4.12. angle between a pair of vectors.

Let /Y, B be nonzero vectors in R”. We define the angle between A and B by

0 = cos™! {{}.B_,}
|| Al 11 B]|

Note nonzero vectors A, B have || A]| # 0 and || B|| # 0 thus the Cauchy-Schwarz inequality | A « B| <

|| Al| || B|| implies i ;‘4" H% i < 1. It follows that the argument of the inverse cosine is within its domain.

Moreover, since the standard inverse cosine has range [0, 7| it follows the angle which is given by
the formula above is the smallest angle between the vectors. Of course, if 6 is the angle between
/T, B then geometry clearly indicates 2w — 6 is the angle on the other side of the 6 vertex. I think
a picture helps:

Z
ak

The careful reader will question how I know the formula really recovers the idea of angle that we
have previously used in our studies of trigonometry. All I have really argued thus far is that the
formula for 0 is reasonable. Examlne the triangle formed by A B and C = B — A. Notice that
A+C=B8. Picture A and B as adjacent sides to an angle 8 which has opposite side C. Let the
lengths of A, B, C be A, B, C respective.

B

Applyinﬂ the Law of Cosines to the triangle above yields

C? = A% + B? — 2ABcos(h).

"if you had Math 131 with me then you proved the Law of Cosines in one of your first Problem Sets.

12



Solve for 6,

~ A2 4 B2 (2

2AB

Is this consistent, does § = 6 ? Choose Coordinate which place the vectors ff, E, C are in the
xy-plane and let A = (A1, Ag), B = (B1, By) hence C = (By — A1, By — Ay) we calculate

02 = (Bl — A1)2 + (BQ — A2)2 = B% —2A1B; + A% + B% — 24989 + A%

Thus, C? = A? + B? — 24+ B and we find:

ézcos_l[zg.é]— s_l[ 4.5 ]:
|

2AB Al 1B

Thus, we find the algebraic definition of angle agrees with the two-dimensional geometric concept
we’ve explored throughout this courses. Moreover, we discover a geometrically lucid formula for
the dot-product:

A B =||4]|||B|| cos(6)

or if we denote A = AA and B = BB then

A«B = ABcos(0).

The connection between this formula and the definition is nontrivial and is essentially equivalent
to the Law of Cosines. This means that this is a powerful formula which allows deep calculation of
geometrically non-obvious angles through the machinery of vectors. Notice:

If /_f, B are nonzero orthogonal vectors then the angle between them is 7/2.

this observation is an immediate consequence of the the definition of orthogonal vectors and the
fact cos(m/2) = 0. We find that orthogonal vectors are in fact perpendicular (which is a known
term from geometry). In addition,

If A, B are parallel vectors then A+«B = AB and 6 = 0.

likewise,

If ff, B are antiparallel vectors then AeB=—AB and 0 = .

The dot-product gives us a concrete method to test for whether two vectors point in the same
direction, opposite directions or are purely perpendiular.

Example 4.13. Let A= (—5,3,7) and B = (6,—8,2). Are these vectors parallel, antiparallel or
orthogonal? We can calculate the dot-product to answer this question. Observe,

AeB=(—5,3,7)+(6,—8,2) = =30 — 24 + 14 = —40 # 0.

Thus, we know A and B are not orthogonal. Furthermore, they cannot be parallel as the dot-
product’s sign indicates they point in directions more than 90° oppposed. Are they antiparallel?

—AB = —/25+ 9+ 49v/36 + 64 + 4 = —/8932 # —40

8even in the context of R™ we can place fY, Band B—Aina particular plane, this argument actually extends to

n-dimensions provided you accept the Law of Cosines is known in any plane

13



Therefore, the given pair of vectors is neither parallel, antiparallel nor orthogonal. Of course, we
could have ascertained all these comments by simply calculating the angle between the given vectors:

A.B —40
0=cos' | —— | =cos™! < ) = 115.5°.
( AB ) /8932

I hope the reader can forgive me for abusing notation and sometimes using radian and other times
angle measure. When I use degree measure it is primarily to emphasize geometric content.

Example 4.14. Consider a cube of side-length o. What is the angle between the interior diagonal
of the cube and the edge of the cube? We place the cube at the origin and envision the diagonal
from (0,0,0) to (o,cv,cx). The edge goes from (0,0,0) to (0,0,«). Let us label the diagonal and
edge by B and A respectively:

X
Observe A = o and B = av/3 whereas A+ B = o2. We find %4'35 = ag‘f/g = % Thus cos 0 = %
— -1 1 ~ o
hence 6 = cos (ﬁ) = 54.74°.

The reason the angle is not 45° in the example above is that the vectors A and B lie on the edge and
diagonal of a nonsquare-rectangle. The larger point here: use vectors to escape wrong intuition in
three-dimensional geometry. The mathematics of vectors allows us to solve problems step-by-step
which defy direct geometric methods.

Example 4.15. Judging the colinearity of two wvectors is important to physics. The work done by
a force is maximized when the force is applied over a displacement which is precisely parallel to the
force. On the other hand, the work done by a perpendicular force is zero. The dot-product captures
all these concepts in a nice neat formula: the work W done by a constant force F applied to an object

undergoing a displacement A¥ is given by | W = F«AF|. For example, if a force F= (1,1,1) N is

applied to a particle displaced under A7 = (1,—2,4)m then the work done is:
W =FeA7=(1,1,1) Ne(1,-2,4)m = 3Nm = 3.J.

Here N is the unit of force called a Newton, m is the unit of distance called a meter and J is the
unit of energy called a Joule.

The formula in the example above only works because the force is constant. If the force varies with
position then we need methods of calculus to calculate the work.

Example 4.16. Let F = (10,18, —6) be a constant force field. Find the work done by the given
force field on an object which moves from (2,3,0) to (4,9,15). It turns ouﬂ that the same work is

9for reasons we only complete understand towards the conclusion of this course!

14



done by the given force no matter which path is taken from (2,3,0) to (4,9,15). So, we assume a
linear path for our convenience and note AT = (4,9,15) — (2,3,0) = (2,6,15). The dot-product of
the force and displacement give the work done by the force:

W = Fe A7 = (10,18, —6) « (2,6,15) = 20 4+ 108 — 90 = 38.

Naturally, we could assume the points are given in terms of meters and the force in Newtons then
our answer above would indicate 38 J of work done. Of course, you could use other units. I leave
further discussion of this matter for your physics course(s).

There are many dot-products in basic physics.

—

Example 4.17. If ¥ is the velocity of a mass m then the kinetic energy is given by K = %mv-ff.

Example 4. 18. Or, if U is the veloczty of a mass m and F is the net -force on m then the power
developed by F is given by P = U .F.

Example 4.19. If J is a constant current density then Je (An) gives the current flowing through
an area A with unit-normal n.

Example 4.20. Ifﬁ is the electric field then Eo(Aﬁ) gives the electric flux through an area A
with unit-normal 1.

Example 4.21. If B is the magnetic field then B « (An) gives the magnetic fluz through an area A
with unit-normal n.

5 The Cross Product

We saw that the dot- product gives us a natural way to check if a pair of vectors is orthogonal. You
should remember: A B are orthogonal iff A.B = 0. We turn to a slightly different goal in thls
section: given a pair of nonzero, nonparallel vectors A B how can we find another vector A x B
which is perpendicular to both A and B? Geometrically, in R it’s not too hard to picture it:

52 )

s N 1% .

| , | 8
Axg 3 .
i A
Y RS Y

G & / Axg

X 4 A #

My intent in this section is to motivate the standard formula for this product and to prove some of
the standard properties of this cross product. These calculations are special to R3. The material
from here to Definition is simply to give some insight into where the mysterious formula for the
cross product arises. If you insist on remaining unmotivated, feel free to skip to the definition.

Suppose /T,é are nonzero, nonparallel vectors in R3. T’ll calculate conditions on A x B which
insure it is perpendicular to both A and B. Let’s denote A x B = €. We should expect C is some
anction of the components of Aand B. T'll use A = (A1, Ag, A3) and B = (B1, B2, B3) whereas
C = (C1,0s,C3) Lo

0=Ce¢A=C1A] +CyAy + C3A5
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0:é°§20131+0232+0333

Suppose A; # 0, then we may solve 0 = CeA as follows,

Suppose By # 0, then we may solve 0 = C+FB as follows,

B Bs
Cy=—-——=0y— =C
1 B 2T B
It follows, given the assumptions Ay # 0 and By # 0,

Ay Az, B Bs
A102+A103— B102+B103

Multiply by A;B; to obtain:
B1ACo + B1A3C3 = A1B2Co + A1 B3C3
Thus,
(A1 B2 — B1A3)Cy + (A1B3 — B1A3)C3 =0

One solution is simply Co = A3By — A1B3 and C3 = A1By; — B1As and it follows that C7 =
AoB3 — BsAs. Of course, generally we could have vectors which are nonzero and yet have A1 =0
or By = 0. The point of the calculation is not to provide a general derivation. Instead, my intent
is simply to show you how you might be led to make the following definition:

Definition 5.1. cross product.

Let ff, B be vectors in R3. The vector A x B is called the cross product of A with B and
is defined by

A' X é = < A2B3 — A3B2./ A3Bl — AlBg, AlBQ — A2B1 >

We say A cross B is A x B.

It is a simple exercise to verify that
Ae(AxB)=0 and B+(AxB)=0.

Both of these identities should be utilized to check your calculation of a given cross product. Let’s
think about the formula for the cross product a bit more. We have

g X é = (Ang — A3B2) 56\1 + (AgBl — AlBg) 53\2 + (A1B2 — AgBl) 53\3
distributing,
A' X é = A9B3 71 — A3ByZ1 + A3B1Z9 — A1 B3 ZT9 + A1 Bo T3 — A3 B T3

The pattern is clear. Each term has indices 1, 2,3 without repeat and we can generate the signs
via the antisymmetric symbol €;;;, which is defined be zero if any indices are repeated and

€123 = €231 = €312 = 1 whereas €321 = €213 = €132 = —1.
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With this convenient shorthand we find the nice formula for the cross product that follows:

3
Ax B= Z Aiijz'jk fC\k
i, k=1

Interestingly the Cartesian unit-vectors 1, s, T3 satisfy the simple relation:

3
Ty X Ty = Zézjk T,
k=1
which is just a fancy way of saying that
| Ix§=3% {§xZ=3 ZIx3=7 |

There are many popular mnemonics to remember these. The basic properties of the cross product
together with these formula allow us to quickly calculate some cross products (see Example )

Proposition 5.2. basic properties of the cross product.

Let /_f, é, C be vectors in R3 and ¢ € R

(1.) anticommutative: A x B=—B x A,
(2.) distributive: Ax (B+C)=Ax B+ AxC,
(3.) distributive: (A+ B)x C=AxC+ B xC,

—,

(4.) scalars factor out: A x (cB) = (cA) x B=cAx B

Remark: I left these proofs here to help you understand why I care about the funny €;;; notation.
I omitted the more sophisticated proofs later in this section for the sake of brevity. You can look
at my Calculus III notes for all the missing details if you’re curious.

Proof: once more, the proof is easy with the right notation. Begin with (1.),

3 3 3
Ax B = Z AiBjGijk fk = — Z AiBjejik /x\k = — Z Binfjik i/L‘\k = —B x A.
i k=1 i k=1 i k=1
The key observation was that €, = —€j;; for all 4, j, k. If you don’t care for this argument then

you could also give the brute-force argument below:

Ax B = ( AyBs — A3By, A3By — A\ Bs, A1By — A3By )
= —( A3By — A3B3, A1B3 — A3By, A2B1 — A1By)
= —( ByA3 — B3As, B3Ay — B1As, B1Ay — B Ay )
= —BxA

17



Next, to prove (2.) we once more use the compact notation,

Ax (B+C)=

i?

Ai(Bj + Cj)eiji Tk
1

(Aiijijk Tk + AiCjEijk '/T\k)
1

i?

" WM&J WM&J

3
= A'qujk/w\k—i- E Aiqujkl/E\k
jk: i,7,k=1
=AxB+AxC(C.

The proof of (3.) follows naturally from (1.) and (2.), note:

— —

(A+B)xC=-Cx(A+B)=-CxA-CxB=AxC+BxC.
I leave the proof of (4.) to the reader. [

The properties above basically say that the cross product behaves the same as the usual addition
and multiplication of numbers with the caveat that the order of factors matters. If we switch the
order then we must include a minus due to the anticommutivity of the cross product.

Example 5.3. Consider, A x A=—Ax A hence 2Ax A =0. Consequently, AxA=0.
We often use the result of the example above in future work. For example:

—

Example 5.4. Let A, B be two three dimensional vectors. Simplify (/_f— é) X (/_1‘4— B).

~—

—

(A-B)x (A+B)=Ax (A+
A

X ~

U:JL

El
L+

There are a number of popular tricks to remember the rule for the cross-product. Let’s look at a
particular example a couple different ways:

Example 5.5. Let A = (1,2,3) and B = (4,5,6). Calculate A x B directly from the definition:

— —

Ax B={(1,2,3) x (4,5,6)
(2(6) = 3(5), 3(4) = 1(6), 1(5) —2(4))
(—3, 6, —3).

There are at least 6 opportunities to make an error in the calculation of a cross product. It is
important to check our work before we continue. A simple check is that A and B must be orthogonal
to the cross product. We can easily calculate that A+ (Ax B) =0 and B+ (A x B) = 0. This almost
guarantees we have correctly calculated the cross product.
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The other popular method to calculate the cross product is based on an abuse of notation with
the determinant. A determinant can be calculated for any n x n matrix A. The significance of
the determinant is that it gives the signed-volume of the n-piped with edges taken as the rows or
columns of A. A simple formula for the determinant in general is given by:

det(A) = Z €irig...in A1iy A2y *++ Aniy,
11,825e-0yfn

Ok, I jest. This formula takes a bit of work to really appreciate. So, typically we introduce the
determinant in terms of the expansion by minors due to Laplace. We begin with a 2 x 2 matrix:

a b

det[c d] = ad — be.

Next, a 3 x 3 can be calculated by an expansion across the top-row,

a b c
det | d e f | =a-det ¢ f —b-det d f +c-det d e
g h i h 1 g 1 g h

=a(ei — fh) — b(di — fg) + c(dh — eg).

The minus sign in the middle term is part of the structure of the expansion. It is also one of the
most common places where students make an error in their computation of a determinant E We
can express the cross product by following the patterns introduced for the 3 x 3 case. In particular,

~ ~ ~

z y Z
(A1, A9, A3) x (B1,By,B3) =det | Ay Ay As
By By B3

= /ZL‘\(Ang — A3BQ) — Z//\(AlBg — A3Bl) + E(AlBQ — AQBl)
= (A2B3 — Ang) T + (AgBl — AlBg) g//\—|— (A1B2 — AzBl) Z.
I invite the reader to verify this aligns perfectly with Definition [5.1

Example 5.6. Let A = (1,2,3) and B = (4,5,6). Calculate A x B via the determinant formula:

gz
(1,2,3) x (4,5,6) =det | 1 2 3
4 5 6

This result matches A x B = (=3,6,—3) as we found in Example .

Technically, this formula is not really a determinant since genuine determinants are formed from
matrices filled with objects of the same type. In the hybrid expression above we actually have one
row of vectors and two rows of scalars. That said, I include it here since many people use it and

107f we go on, a 4 x 4 matrix breaks into a signed-weighted-sum of 4 determinants of 3 x 3 submatrices. More
generally, an n X n martrix has a determinant which requires on the order of n! arithmetic steps. You'll learn more
in your linear algebra course, I merely initiate the discussion here. Fortunately, we only need n = 2 and n = 3 for
the majority of the topics in this course.
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I also have found it useful in past calculations. If nothing else at least it helps you learn what a
determinant is. That is a calculation which is worthwhile since determinants have application far
beyond mere cross products. We can also use the basic relations:

~ ~

IXyY=2, YXz=1T, 2ZXT=7]
and the properties of cross products to work out cross products algebraically:

Example 5.7. Let A= 7 +23§+3% and B=47+ 57+ 62. Calculate A x B as follows:

Fx (AT +57+62)+27x (AT +57+62)+35x (4T +57+6%)
Fx(574+63)+27x (47 +63) +35x (47 +57)

S5TX P+6TX 2+8Yx T+ 12yx 2+122x T+ 152 x 4

524+ 6(—y) +8(—2)+ 122+ 12y + 15(—7)

-3r+6y—3%.

Ax B

This agrees with the conclusion of the previous pair of examples.

The calculation above is probably not the quickest for the example at hand here, but it is faster
for other computations. For example:

Example 5.8. Suppose A = (1, 2,3) and B = 7 then

Example 5.9. Let A = (3,2,4) and B = (1, -2, -3). We calculate,

~

T

2 4

-2 -3

Z(—6+8)— y(—9—4)+ z(—-6 —2)
27+ 13y — 87Z.

Ax B

I
=

et

|
= W 8)

As a check on our computation, note that A«(A x B) =0 and B+ (A x B) = 0.
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There are a number of identities which connect the dot and cross products. These formulas require
considerable effort if you choose to use brute-force proof methods.

Proposition 5.10. nontrivial properties of the cross product.

Let /_f, é, C be vectors in R3

(1.) Ax(BxC)=(A+C)B—(A+B)C

Use Lagrange’s identity together with A« B = AB cos(6),
|A x B||? = A2B? — [AB cos(0)]? = A%2B?(1 — cos?()) = A2B?sin?(0)

It follows there exists some unit-vector n such that

A x B = ABsin(0)a)

The direction of the unit-vector n is conveniently indicated by the right-hand-rule. I typically
perform the rule as follows:

1. point fingers of right hand in direction A
2. cross the fingers into the direction of B
3. the direction your thumb points is the approximate direction of n

I say approrimate because Ax B is strictly perpendicular to both A and B whereas your thumb’s
direction is a little ambiguous. But, it does pick one side of the plane in which the vectors A and
B reside.

Example 5.11. . Consider A and B pictured below. Find the magnitude offf x B and describe
its direction. We produce the right picture by the right hand rule:

- =
309 -~ 309 = i
B B @// W E

g

g

Note ||A x B|| = ABsinf = 40sin 30° = 20. By the right hand rule, we find the direction of A x B
1s into the page. The ® symbol intends we visualize the vector as an arrow pointing into the page.

Example 5.12. Let @ and ¥ be as pictured below with u = 5 and v = 4v/3. Find the magnitude
and direction vector of U X U: we use the right hand rule to produce the diagram on the right:

ulg/ UM
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Note ||U x ]| = vusin @ = 20v/3sin 60° = 30. By the right hand rule, we find the direction of ¥ x @
1s out of the page. The ® symbol indicates a vector pointing out of the page.

The cross product is also found in many physical applications. I give two common examples.

Example 5.13. In rotational physics the direction of a rotation is taken to be the axis of the ro-
tation where a counter-clockwise-rotation (CCW) is taken to be positive. To decide which direction
is CCW we grip the rotation axis and point our right-hand’s thumb in the direction of the positive
axis. Once that grip is made the fingers on the right hand encircle the axis in the CCW-rotational
sense. A torque on a body allowed to rotate around some aris. makes it rotate. In partzcular if 7 is
the moment arm and F is the force applied then T = 7 x F s the torque produced by F relative
to the given axis.

Problem: Find the torque due to the force F pictured below. Describe the rotation produced as
CCW or CW given the axis of rotation points out of the page

piwe%

poirt —

rao\wj line +o where
E iz applied ,

Solution: Imagine moving F to P while maintaining its direction. This is called parallel trans-
port. We calculate 7% F as if they are both attached to P. The right hand rule reveals the direction
is into the page (®) and we can determine 6 from trigonometry and the given geometric data. Ob-
serve 0 is also interior to the triangle at P hence sinf = 1% . Also, by pythagorean theorem,
r =1+/8 + 62 = 10. Therefore, T = rFsin@ = 6F. The direction of the torque is @ which indicates

a CW-rotation relative to the outward pointing azis through P.

Example 5.14. Another important application of the cross product to physics is the Lorentz force
law. If a charge q has velocity U and travels through a magnetic field B then the force due to the
electromagnetic interaction between q and the field is F' = qU x B.

Finally, we should investigate how the dot and cross product give nice formulas for the area of a
parallelogram or the volume of a parallel piped. Suppose A, B give the sides of a parallelogram.

Area = || Ax B ||

The picture below shows why the formula above is true:

ARea = (BMEV\%!@HT) = ABsinD

-
!
}
1
g s ARep = n ﬁ. = § n

>l
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On the other hand, if ff, B , c give the corner-edges of a parallelogram the
Volume = | A«(BxC) |

These formulas are connected by the following thought: the volume subtended by /_f, B and the

unit-vector f from A x B = AB sin(f#)n is equal to the area of the parallelogram with sides ff, B.
Algebraically:

fie(Ax B) | = | he(ABsin(9)n)| = |[ABsin(0)| = |4 x B]|.

The picture below shows why the triple product formula is valid.

, 0 - Vsl e ok bwse.
,, e | =l T fl= [T [BAE | = et
[

q e | = h G&xg -
—‘\/u UG, 93

4 . Ql N : ‘ ) !

e Nn= AxB
A

Example 5.15. Find the volume of a parallel- pzped with edge vectors A = (0,1,1) and B= (1,0,0)

and C = <0,1,0> We calculate B x C = 7 x y = z. Therefore, the volume of the solid is
V:A-(B x(C)=1(0,1,1)e 2= 1.

Moreover, given this geometric interpretation we find a new proof (up to a sign) for the cyclic
property. By the symmetry of the edges it follows that | A BxC)| =] Be(CxA)| =
| Ce(A x B) |. We should find the same volume no matter how we label width, depth and height.

Uwe could also show that det[A|B|C] = A (B x C) thus the determinant of the three edge vectors of a parallel
piped yields its signed-volume. We can define the sign of the volume to be positive if the edges are ordered to respect
the right hand rule. Respecting the right hand rule means the angle between A x B and C' is less than 90°.
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