Do not omit scratch work. I need to see all steps. Skipping details will result in a loss of credit. Thanks. You are allowed the use of a scientific (non-graphing) calculator. No electronic communication devices of any kind permitted, no IPODs, Zunes, Walkmans etc... This is a timed test and time is likely to be an issue for you, budget your time wisely. There are 150pts to earn on this exam.

Problem 1 [6pts] Simplify the expressions below into the format cx^n where c, n are constants.

(a.)
$$\frac{1}{3\sqrt[5]{x^2}} = \underline{\qquad}$$
, (b.) $\frac{2}{7x^3} = \underline{\qquad}$, (c.) $\sqrt[3]{5x^8} = \underline{\qquad}$.

$$(b.) \frac{2}{7x^3} = \underline{\hspace{1cm}},$$

$$(c.) \sqrt[3]{5x^8} = \underline{\qquad}$$

Problem 2 [4pts] State the domain and range for each of the inverse trigonometric functions:

- $(a.) \ dom(\sin^{-1}(x)) =$
- $(b.) dom(\tan^{-1}(x)) =$
- $(d.) range(\sin^{-1}(x)) =$
- $(f.) range(\tan^{-1}(x)) =$

Problem 2 [3pts] Suppose that f is a one-one function and $a, b \in dom(f)$. If f(a) = f(b)then is it true that a = b? (one sentence should do.)

Problem 3 [7pts] Suppose that $f(x) = x^2$ and dom(f) = [-1, 1] is this function invertible? If it is invertible find its inverse. If it is not invertible then find a restriction of f which is invertible. Please state the domain and range of the inverse (or local inverse) which you find.

Problem 4 [4pts] Solve the inequality $x^2 - 3 < 2x$.

Problem 5 [8pts] Find the domain of $f(x) = 1/\cos(x - \pi/2)$.

Problem 6 [20pts] Prove by the $\epsilon\delta$ -definition of the limit that

$$\lim_{x \to -2} (x^2 + 3x - 4) = -6.$$

Problem 7 [3pts] Find all real solutions of $x^3 = x$.

Problem 8 [4pts] Suppose the tangent line to y = f(x) at x = 2 has equation y = 42 + 13(x - 2). Fill in the blanks:

$$f(2) = \underline{\qquad \qquad } f'(2) = \underline{\qquad \qquad } .$$

$$f'(2) =$$

Problem 9 [30pts] Find the following limits, if they exist. If they don't exist you may simply state $\pm \infty$, d.n.e. or similar brief description of the divergent nature of the given limit.

$$(a.) \lim_{x \to 0^+} \ln(x)$$

(b.)
$$\lim_{x \to 3^+} \frac{-2}{(3-x)^2}$$

(c.)
$$\lim_{x \to 5} \frac{\sqrt{x+11} - 4}{x-5}$$

(d.)
$$\lim_{x \to 2} \frac{x-2}{x^3 - 2x^2 + 2x - 4}$$

(e.)
$$\lim_{h \to 0} \frac{2(1+h)^2 + 3 - 5}{h}$$

Problem 10 [5pts] Given the position $s(t) = 2t^2 + 3$ calculate the velocity at time t = 1 (hint: may use previous calculations on test).

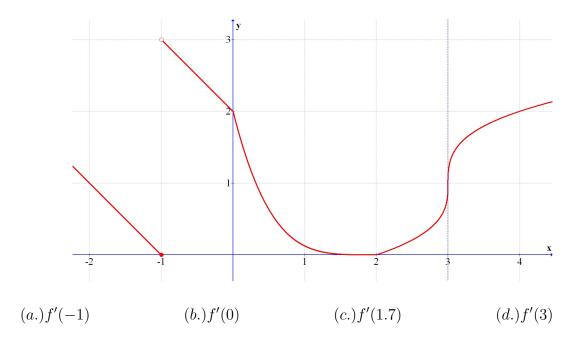
Problem 11 [10pts] Show f defined below is discontinuous at x = 2.

$$f(x) = \begin{cases} 3|x - 2|(x - 2)^{-1} & \text{if } x < 2\\ 3 & \text{if } x \ge 2 \end{cases}$$

Problem 12 [10pts] Suppose that $10 + \ln(5 - x) \le f(x) \le 3\sqrt{x} + x$ for 3 < x < 4.5. Calculate $\lim_{x\to 4} f(x)$.

Problem 13 [3pts] Let f be a function. State the definition of continuity at a point $a \in int(dom(f))$ (recall int indicates the interior, or inside of the set).

Problem 14 [12pts] Find a value for c such that function below is continuous at x=2. Explain your choice in terms of arguments with limits.


$$f(x) = \begin{cases} cx - 1 & \text{if } x \le 2\\ \frac{4c(x-2)}{x^2 - 4} & \text{if } x > 2 \end{cases}$$

Problem 15 [5pts] Use the intermediate value theorem to prove that there exists a solution to the equation below: hint: think about the interval [0, 4].

$$\sqrt{4x} - \sqrt[3]{x/4} = 1$$

Problem 16 [10pts] Let f(x) = 1/x. Show, by the definition, that $f'(x) = -1/x^2$ for $x \neq 0$.

Problem 17 [8pts] Read the derivatives from the graph of y = f(x) given below, if possible. If not possible briefly explain why.

Problem 18 [2pts] State the defining formula: cosh(x) =______.