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3. LIMITS AND CONTINUITY 
 

Algebra reveals much about many functions. However, there are places 

where the algebra breaks down thanks to division by zero. We have 

sometimes stated that there is “division by zero”. We do not mean to indicate 

that we are actually dividing by zero. Instead, our meaning is that we have to 

avoid that point because the laws of arithmetic fail to be reliable at that 

point. A natural question to ask is what happens at such ill-defined points? Is 

there a logically reliable procedure with which we can elicit information 

about such cantankerous points?  

 

The point of this chapter is to give an answer to what happens when we try to 

divide by zero. Not that we ever manage to actually divide by zero, instead we 

find a method to do the next best thing. We describe how to take the limit of 

functions at such points. It turns out division by zero is just one of several 

other so-called indeterminant forms. We will discuss why they are called 

“indeterminant”. We conclude the chapter by using limits to define 

continuous functions. 

 

Limits are used to make all the basic definitions of calculus. It is thus 

important for us to gain some familiarity with limits in the interest of better 

understanding the definition of derivative and integral in the later chapters. 

I will admit that (at least where limits are concerned) we are not entirely 

rigorous in this work. There is a more basic method of proof that we will not 

usually employ. Often the proof is by graph or a table of values or simply a 

sentence explaining logically how the function behaves close to the limit point 

will suffice for this course. The heavy lifting for limits typically involves 

removing the indeterminancy through some algebraic chicanery. 

 

The rigorous definition for the limit is the so-called -  definition. As a 

historical note the -  formulation actually came long after Newton and 

Leibnitz pioneered the subject of calculus. There were contradictions and 

problems that arose because of the free-wheeling careless way calculus was 

first discussed (in Europe) in terms of fluxions or infinitesimals. Only later 

did Euler, Cauchy, Weirstrauss and other 19th century mathematicians 

formalize the concept of the limit through the -  idea. That said, we will only 

pay attention to this technical detail in one section. Most of questions we 

consider in calculus do not cut so finely as to require the -  formulation. 

Typically an advanced calculus or real analysis course will deal with more 

serious questions involving the -  technique. 
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3.1. DEFINITIONS OF LEFT AND RIGHT LIMITS  
 

The limit of a function exists only if both the left and right limits of the 

function exist. Whenever I say “exists” you can replace it with “exists as a 

real number”. For example,  does not exist as a real number. 

However, it is true that  exists as a complex number. I digress, let’s 

get back to the limits...             

 

 

 

 

So many words. Let’s look at a few pictures.  

Definition 3.1.1: If  gets closer and closer to a real number  as  

approaches  from the left on the number line then we write 

 

which says that the left limit of  at  is . Another notation I may use 

at times for the left limit is  as .  
 

If  gets closer and closer to a real number  as  approaches  from 

the right on the number line then we write 

 

which says that the right limit of  at  is . Another notation I 

may use at times for the right limit is  as .  
 

When the left and right limits of  are both equal, say  and 

, then we say that the limit of  at  is  and we write 

 

which can also be written  as .  
 

The following comments apply to all three kinds of limits above. We call 

 the limit point. If there does not exist a real number which satisfies 

the limiting condition then we say that the limit does not exist. We can 

abbreviate that by writing it equals “d.n.e.”  

 

Now in the case the limit does not exist there are actually many ways 

that can happen. Two of which we have a nice notation for: 

   ● if the function outputs arbitrarily large positive values as we     

      approach the limit point then we write  instead of d.n.e. 

 

   ● if the function outputs arbitrarily large negative values as we     

      approach the limit point then we write  instead of d.n.e. 

 

These correspond to vertical asymptotes in the graph.  
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Let’s begin with a function with a hole in its graph. Suppose that the 

following is the graph  
 

     
 

We can easily see that as  approaches 2 from the left or the right we get  

closer and closer to 4. So we say that the . Notice that the limit 

point  is not in the domain of the function. That is pretty neat, we can 

evaluate the limit at  even though  is undefined. For the function 

pictured above we can see that for limit points other than  we can 

actually say that . 

 

Next, let’s examine a function which has left and right limits at a particular 

limit point, but they disagree. I’m tired of , let’s say the following is the 

graph , let us examine the limit at  
 

    
 

We see that as  the function . On the other hand, as  

we observe that . So the left limit is -2 while the right limit is 2. So  

the one-sided limits exist but do not agree. Hence we say that the limit of  

at zero does not exist. In other words, . I’ll grant you a 

bonus point if you can give me an explicit formula for  without breaking it 

up into cases. (I know there is such a formula cause that’s how I graphed it.) 
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Finally let’s examine a graph with a few vertical asymptotes. Let us suppose 

that the following is the graph of  
 

     
 

I have used green vertical lines to illustrate the vertical asymptotes of the 

function, these are not part of the graph itself. The function’s graph is in red. 

To begin we discuss the limits at . It is clear that  takes on larger 

and larger positive values as we get closer and closer to  from the left 

or right so we can write that  and  thus 

 

On the other hand the story at  is a little different. We can see that as se 

approach two from the left we find the function takes on larger and larger 

positive values so . In contrast, as we approach two from the 

right side the function takes on larger and larger negative values so 

. Consequently we find that the two-sided limit at  is 

not  or , we can only say that  

 

it would not make sense to say it was  since the function does not just get 

really large and positive at the limit point, likewise it does not make sense to 

say that the limit was  since the function did not just get really large and 

negative at the limit point. 

 

Moral of story: limits encapsulate lots of different kinds of behavior both 

within the domain of the function and also just outside it, like with a hole in 

the graph or vertical asymptote. The subtle thing to remember is that the 

limit gets really really really really…. really close to the limit point without 

actually getting there. This allows us a logical freedom that ordinary algebra 

will not permit.  

 
There is something called nonstandard analysis where infinitesimals and infinity are actually 

“numbers” and in that context limits are traded for formal algebraic ideas, but you have many 

many math courses before that is something  I should tell you, oh oops. 
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3.2. CONTINUOUS FUNCTIONS 
 

Almost all the functions that arise in basic applications are continuous or 

piecewise continuous (will discuss later). Without further ado, 
 

 

 

 

 

 

 

 

 

 

 

 

Graphically you might recall that a function is continuous if you can draw its 

graph without lifting your pencil (or crayon etc…). 

   

                      
     i.) not connected               ii.) hole in graph          iii.) vertical asymptotes 

 

Case i. is not continuous because the domain is not connected. However, the 

function in case i. is continuous on the two separate intervals pictured. Case 

ii. has a hole in the graph at  so the function is not continuous at 2 hence 

the function is discontinuous. Case iii. has vertical asymptotes at  so 

the function is clearly discontinuous at those points. However, at all other 

points the function in iii. is continuous. We could say that in all the cases 

above if a point is on the interior of the domain then the function is 

continuous at that point. By interior we simply mean that the point is not 

quite to the boundary of the domain, so an interior point has some distance 

between itself and say the hole in the graph or a vertical asymptote, or maybe 

just the endpoint of the domain as in case i.  

 

 

 

 

 

Definition 3.2.1: A function  is continuous at a if  

 

 

When  is continuous for each point inside  then we say the 

function  is continuous on I. For endpoints in  we relax 

the double-sided limit to the appropriate single sided limit to be fair. 

Now if  is a connected subset of the real numbers then we say 

that  is continuous if  is continuous on .  
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3.3. EVALUATING BASIC LIMITS  
 

Customarily the theorem which I am about to give is motivated by a longer 

discussion of limits. My philosophy is that it is better to just state this 

theorem so we can use it. The proof of the theorem actually follows from the 

properties of limits which I give in the section after this. Anyway, this 

theorem is very important, perhaps the most important theorem I will give 

you concerning continuity. It gives the basic building blocks we have to use.  
 

 
 

In other words polynomial, rational, algebraic, trigonometric, exponential, 

logarithmic, hyperbolic trigonometric, etc… discussed in  2.4 are continuous 

where their formulas make sense. If we are not at a vertical asymptote or 

hole in the graph then elementary functions are continuous. I should mention 

that there exist non-elementary functions which are discontinuous 

everywhere. Those sort of functions arise in the study of fractals.  
 

 
 

I may ask you to calculate a particular limit a particular way. However, if I 

don’t say one way or the other you are free to think for yourself. Sometimes a 

graph is a good solution, sometimes a table of values is convenient, 

sometimes we can use Theorem 3.3.1 or properties I’ll discuss in the next 

section. The example below illustrates the table of values idea. 

 

Theorem 3.3.1: The elementary functions given in section 2.4 are all 

continuous at each point in the interior of their domains.  

Example 3.3.1: In each of the limits below the limit point is 

on the interior of the domain of the elementary function so 

we can just evaluate to calculate the limit. 

 

 
 

We did not even need to look at a graph to calculate these limits. Of 

course it is also possible to evaluate most limits via a graph or a table 

of values, but those methods are less reliable..  
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Now the limit consider in Example 3.3.2 is not nearly as obvious as the limits 

in Example 3.3.1. I should mention that the limit has indeterminant form of 

type 0/0 since both  and  tend to zero as  goes to zero. One of main 

goals in this chapter is to learn how to analyze indeterminant forms. I do not 

recommend the table of values method for most problems. It will work, but 

it’s kind of like painting your car with a paint brush. I do it once, but 

probably not when I was trying to impress anybody. It is a good way to gain 

intuition about a limit, but I would like to see us use more solid arguments 

for the final argument.        

 

Indeterminant forms: 
 

The first three of these we encounter most often. We will need to wait a little 

bit before we tackle some of the trickier cases. But, just to give you an idea of 

all the different ways a limit can be undetermined, here they are. 

 

• We say that  is of “type ” if  and . 

 

• We say that  is of “type ” if  and .  

 

• We say that   is of “type ” if  and .  

 

• We say that  is of “type ” if  and . 

 

• We say that  is of “type ” if  and . 

 

• We say that  is of “type ” if  and . 

 

• We say that  is of “type ” if  and . 

 

When we encounter such limits we have to do some thinking and/or work to 

unravel the indeterminancy. We saw the table of values revealed the mystery 

of  in Example 3.3.2. We will learn better methods in future sections.  

 

 

 

Example 3.3.2: Using a table of values to see   

x sin(x)/x 

0.5 0.958851 

0.2 0.993347 

  0.1 0.998334 

0.01 0.999983 

0.001 0.999999 
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3.4. PROPERTIES OF LIMITS 
 

The notation  is meant to include left, right and double-sided limits. 
 

 
 

It should be emphasized that we need to know that the limits of both 

functions exist for this proposition to work. You cannot just glibly say  

 and  so . This kind of 

reasoning is not allowed because there are cases where it fails. It could be 

that  or 2 or 3 or -75 or 42 etc… it is undetermined. We need to 

know that  and  or else we cannot break up  limits as described 

in Proposition 3.4.1. Ok, enough about what not  to do,  let’s see what we can do. 

 

 
 

 

 

 

 

 

Proposition 3.4.1: Let  and suppose that the limits of the functions  and 

 exist, that means  and , then 

 

Example 3.4.1: I am going to comment out to the side as we apply the 

properties listed in Proposition 3.4.1,  

 

 
notice that the first step was not really justified until we learned that both 

 and  exist. Also I should mention that we have just 

used the continuity of sine, cosine and the exponential function. 
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3.5. ALGEBRAICALLY DETERMINING LIMITS 
 

We have established all the basics. Now it is time for us to do some real 

thinking. The examples given in this section illustrate all the basic algebra 

tricks to unravel undetermined limits. I like to say we do algebra to 

determine the limit. The limits are not just decoration, many times an 

expression with the limit is correct while the same expression without the 

limit is incorrect. On the other hand we should not write the limit if we do not 

need it in the end. How do we know when and when not? We practice. 
 

      
 

      

Example 3.5.1:  

 
 

Notice that this limit is of type 0/0 since the numerator and denominator are 

both zero when take the limit at -2.  
 

 

The second step where we cancelled  with  is valid inside 

the limit because we do not have  in the limit. We get very 

close, but that is the difference, this is not division by zero. 

Example 3.5.2: The limit below is also type 0/0 to begin with, 
 

 

I reiterate, we can cancel the  inside the limit because  within 

the limit. Again we see that factoring and cancellation has allowed 

us to modify the limit so that we could reasonably plug in the limit 

point in the simplified limit. This is often the goal. 
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We see that sometimes algebraic manipulations will change an undetermined 

form to a determined form, by which I simply mean an expression which does  

not violate the laws of real arithmetic when you plug in the limit point.  

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.5.3:  

 

Example 3.5.4: the first step is a time-honored trick, it is nothing 

more than multiplication by 1. So if you encounter a similar problem 

try a similar trick. 

 

 

Example 3.5.5: Here the trick is to combine the fractions in the 

numerator by finding the common denominator of . 
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The function we just looked at in Example 3.5.7. is an example of a step 

function. They are very important to engineering since they model switching. 

The graph of  looks like a single stair step, 

 

           

Example 3.5.7: Piecewise defined functions can require a bit more 

care. Sometimes we need to look at one-sided limits. 

 

recall that the notation  is the absolute value of , it is the distance 

from zero to  on the number line.  

 

In the left limit   we have  so  thus, 

 

In the right limit  we have  so  thus, 

 

Consequently we find that the limit in question does not exist since 

the left and right limits disagree. 

 

Example 3.5.6:  
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3.6. SQUEEZE THEOREM 
 

There are limits not easily solved through algebraic trickery. Sometimes the 

“Squeeze” or “Sandwich” Theorem allows us to calculate the limit.  
 

 
 

We can think of  as the top slice of the sandwich and  as the bottom 

slice. The function  provides the BBQ or peanut butter or whatever you 

want to put in there.  
 

   
 

 

 

 

 

 

 

 

 

Incidentally, you might be wondering why we could not just use Proposition 

3.4.1 part iii. The problem is that since the limit of  at zero does not 

exist (if you look at the graph of the function  you’ll see that it oscillates 

wildly near zero) we have no right to apply the proposition. 

Example 3.6.1: Use the Squeeze Theorem to calculate   

Notice that the following inequality is suggested by the definition or 

graph of sine 

 

Now multiply by  which is positive if  so the inequality is 

maintained, 

 
 

We identify that  and  sandwich the function 

 near . Moreover, it is clear that 
 

 
 

Therefore, by the Squeeze Theorem,  Graphically we 

can see why this works,  

                                
 

 

 

 

Theorem 3.6.1:( Squeeze Theorem) Let  for all  

near  then we find that the limits at  follow the same ordering, 
 

 
 

Moreover, if    then  . 
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3.7. INTERMEDIATE VALUE THEOREM 

 

 
 

Notice that this theorem only tells us that there exists a number , it does not 

actually tell us how to find that number. This theorem is quite believable if 

you think about it graphically. Essentially it says that if you draw a 

horizontal line  between the lines  and  then since the 

function is continuous we must cross the line  at some point. Remember 

that the graph of a continuous function has no jumps in it so we can’t possibly 

avoid the line . Let me draw the situation for the case , 

 

      
 

The IVT can be used for an indirect manner to locate the zeros of continuous 

functions. The theorem motivates an iterative process of divide and conquer 

to find a zero of the function. Essentially the point is this, if a continuous 

function changes from positive to negative or vice-versa on some interval then 

it must be zero at least one place on that interval. This observation suggests 

we should guess where the function is zero and then look for smaller and 

smaller intervals where the function has a sign change. We can just keep 

zooming in further and further and getting closer and closer to the zero. 

Perhaps you have already used the IVT without realizing it when you looked 

for an intersection point on your graphing calculator.  

 

Green line is . Purple lines are 

 and . In this 

example there is more than one point 

 such that . There must 

be at least one such point provide 

that the function is continuous. 

Example 3.6.2: Suppose that all we know about the function  is 

that it is sandwiched by  for all . Can we 

calculate the limit of  as  ? Well, notice that 
 

 
 

Therefore, by the Squeeze Theorem,  
 

Theorem 3.7.1 (I.V.T.):  Suppose that  is continuous on an interval  

 with  and let  be a number such that  is between 

 and  then there exists  such that . 
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Let me take a moment to write an algorithm to find roots. Suppose we are 

given a continuous function , we wish to find  such that .  
 

 1.) Guess that  is zero on some interval . 

 2.) Calculate  and  if they have opposite signs go on to 3.)    

      otherwise return to 1.) and guess differently. 

 3.) Pick  and calculate . 

 4.) If the sign of  matches  then say , and let  

      If the sign of  matches  then say , and let . 

 5.) Pick  and calculate . 

 6.) If the sign of  matches  then say , and let  

      If the sign of  matches  then say , and let . 
  

And so on… If we ever found  then we stop there. Otherwise, we can 

repeat this process until the subinterval  is so small we know the zero 

to some desired accuracy. Say you wanted to know 2 decimals with certainty, 

if you did the iteration until the length of the interval  was 0.001 then 

you would be more than certain. 

Example 3.7.1: Show that there exists a zero of  the polynomial 

 on the interval . Observe that, 
 

 
 

We know that  is continuous everywhere and clearly  

so by the IVT we find there exists some point  such that 

. To find what  is precisely would require more work. 

Example 3.7.2: Does  for some  ?  

Lets rephrase the question. Does  for some 

 ? This is the same question, but now we can use the IVT 

plus the sign change idea. Observe, 
 

 
 

Obviously  and both  and  are 

continuous everywhere so by the IVT there is some  such 

that  Clearly that point has 

 

If you examine the graphs of  and  you will 

find that they intersect at  (approximately). 
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3.8. PRECISE DEFINITION OF LIMIT 
 

You might read the article by Dr. Monty C. Kester posted on Blackboard. It 

helps motivate the definition I give now. 

 

 

 

 

 

 

Notice we do not require that the limit point be in the domain of the function. 

The zero in  is precise way of saying that we do not consider the 

limit point in the limit. All other  that are within  units of the limit point  

are included in the analysis ( recall that  gives the distance from a to b 

on the number line). If the limit exists then we can choose the  such that the 

values  are within  units of the limiting value .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 3.8.1:  We say that the limit of a function  at  exists 

and is equal to  iff for each  there exists a  such that   

 whenever  

Example 3.8.1: Prove that  
  

 
Let us examine what we need to produce. We need to find a  such that 

 
  

 

The way this works is that  is chosen to start the proof so we cannot 

adjust , however the value for  we are free to choose. But, whatever 

we choose it must do the needed job, it must make the implication 

hold true. I usually look at what I want to get in the end and work 

backwards. We want, . Notice 

 
  

 

If we choose  such that  then it should work. So we will want to 

use   in our proof.  Let’s begin the proof: 

 

Let  choose . If  such that  then 

 
  

 

Therefore,  

 

I put the proof in italics to alert you to the fact that the rest of this jibber-jabber 

was just to prepare for the proof. Often a textbook will just give the proof and 

leave it to the reader to figure out how the proof was concocted. 
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I’ll now give a formal proof  that the limit is linear. This proof I include to 

show you how these things are argued, you are responsible for problems more 

like the easy example unless I specifically say otherwise. If I were to put this 

on a test I’d warn you it was coming (or it would be a bonus question) 

 

 

 

 

 

 

 

 

 

Proof:  Let  and assume that  and  . 

 

Clearly   thus as  there exists  such that 

 implies . Likewise,  as  there 

exists  such that  implies . 

 

Define . Suppose  such that  then 

 and  because . Consider then, 

 

  

 
Hence, for each  there exists   such that  

whenever  . Thus, . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proposition 3.8.2:  If  and  then 

. In other words, 
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The proof I just gave may leave you with some questions. Such as: 

 

• Where did the  come from ? 

 

• Where did the  come from? 

 

Short answer, imagination. Longer answer, we typically work these sort of 

proofs backwards as in Example 3.8.1.  

 

As I said before, you start with what you want to show then determine how 

you should use the given data to prove the conclusion. There are a few facts 

which are helpful in these sorts of arguments. Let’s make a collection: 

 

• If  and  then .  

• Let . If  then . (preserved inequality) 

• Let . If  then . (reversed inequality) 

•  

•  

•  

•  

• Let  then  is equivalent to   

• The triangle inequality;  

•  

• Let  then if we add to the denominator of some fraction it makes 

the fraction smaller: (assuming ) 

 

  

 

• Let  then if we subtract from the denominator of some fraction it 

makes the fraction larger: (assuming ) 

 

  

 

Now, I doubt we will use all these tricks. In include them here because if you 

do take a course in real analysis you’ll need to know these things. Sadly, not 

all real analysis books make any attempt to organize or be clear about these 

basic tools. (I speak from bad experience) Enough about all that let’s try some 

more examples. 
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The text also discusses a technical definition for what is meant by limits that 

go to infinity or negative infinity. We will not cover those this semester. You 

will have a problem like Example 3.8.1 or 3.8.2 on the first test. It will be 

worth 10 points. 

 

 

 

 

  

Example 3.8.2:  (this is the bow-tie proof) Prove that  
  

 
 For each   we need to find a  such that 

 
  

 

Observe, given that  we have 

 
  

 

If we choose  such that  then it should work. So we will want to 

use   in our proof.  Let’s begin the proof: 

 

Let  choose . If  such that  then 

 
  

 

Therefore,  

 

I put the proof in italics to alert you to the fact that the rest of this jibber-jabber 

was just to prepare for the proof. Often a textbook will just give the proof and 

leave it to the reader to figure out how the proof was concocted. 
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Example 3.8.3:  Prove that  

  

 
 For each   we need to find a  such that 

 

  

 

Observe, given that  we have 

 

  

 

If we choose  such that  then it should work. So we will want to 

use   in our proof.  Let’s begin the proof: 

 

Let  choose . If  such that  then 

 
  

 

Therefore,  

 

I put the proof in italics again as to emphasize the distinction between preparing 

for the proof and stating the proof. 


