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4. DERIVATIVES 
 

We will define the derivative of a function in this chapter. The need for a 

derivative arises naturally within the study of the motion of physical bodies.  

 

You are probably already familiar with the average velocity of a body. For 

example, if a car travels 100 miles in two hours then it has an average 

velocity of 50 mph. That same care may not have traveled the same velocity 

the whole time though, sometimes it might have gone 70mph at the bottom of 

a hill, or perhaps 0mph at a stoplight. Well, this concept I just employed used 

the idea of instantaneous velocity. It is the velocity measured with respect to 

an instant of time.  

 

How small is an “instant”? Well, it’s pretty small. You might imagine that 

this “instant” is some agreed small unit of time. That is not the case, there is 

no natural standard for all processes. I suppose you could argue with the 

policeman that your average rate of speed to school was 30mph (taking the 

“instant” to be 10 minutes for me) but I bet all he’ll care about is the 40mph 

you did through the 20mph school zone. The “velocity” of a car as measured 

by radar is essentially the instantaneous velocity. It is the time rate change 

in distance for an arbitrarily small increment of time. It seems intuitive to 

want such a description of motion, I have a hard time thinking about how we 

would describe motion without instantaneous velocity. But, then I have ( we 

all have ) grown up under the influence of Isaac Newton’s ideas about motion. 

Certainly he was not alone in the development of these ideas, Galileo, Kepler 

and a host of others also pioneered these concepts which we take for granted 

these days. Long story short, differential calculus was first motivated by the 

study of motion. Our goal in this chapter is to give a precise meaning to such 

nebulous phrases as “instant” of time. The limits of chapter 3 will aid us in 

this description. 

 

Generally, the  derivative of a function describes how the function changes 

with respect to its independent variable. When the independent variable is 

time then it is a time-rate of change. But, that need not always be the case. I 

believe that Newton first thought of things changing with respect to time, he 

had physics on the brain. In contrast, Leibniz considered more abstract rates 

of change and the modern approach probably is closer to his work. We use 

Leibniz’ notation for the most part. Anyway, I digress as usual. 

 

Finally, I cannot overstate the importance of this chapter. The derivative 

forms the core of the calculus sequence. And it describes much more than 

velocity, that is just one application. Basically, if something changes then a 

derivative can be used to model it. Its ubiquitous.  
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4.1. DEFINITION OF DERIVATIVE 
 

Let  be a fixed number throughout this discussion. Let  be an number 

which we allow to vary. Then a secant line at  is simply a line which 

connects that point to another point  on the graph of the 

function. I have pictured a particular secant line below, 

 

 

 

 

 

 

 

 

 

 

You can imagine that as h increases or decreases we will get a different 

secant line. In fact, there are infinitely many secant lines. Notice that the 

slope of the pictured secant line is just the rise over the run, that is 
 

 
 

this may be familiar to you, it is the so-called “difference quotient” some of 

you may have seen in precalculus.  

 

Now imagine that h goes to zero. As we take that limit we will get the 

tangent line which just kisses the function at the point  (it may 

however intersect the graph elsewhere depending on how the graph curves 

away from the point of tangency).  

 

 

 

 

 

 

 

 

 

 

 

 

Definition 4.1.1: The tangent line to  is the line 

that passes through  and has the slope 
 

 
 

if the limit exists, otherwise we say there is no tangent 

line at that point. If there is a tangent line through 

 to the curve  then the equation for the 

tangent line is 
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Definition 4.1.2: The derivative of  at  is the slope of the 

tangent line through  when it exists. We denote it by 

 

 

The tangent line is unique when it exists because limits are unique when 

they exist. There are other equivalent ways of looking at the limit which 

gives the slope of the tangent line. For examples: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The slope of the tangent line characterizes how quickly  is changing with 

respect to . The slope of the tangent line gives us the instantaneous rate of 

change of  is with respect to . Let us give the slope of the tangent line a new 

name, let’s call it “the derivative at a point” 

 

 

 

 

 

 

 

this terminology becomes clearer in the next section. Sorry to not give any 

explicit examples so far, stick with me we will get to them soon.  

 

You may be wondering, when does the derivative at a point fail to exist? 

What sort of function would make that happen? The example that follows 

illustrates one culprit, a “kink” or “corner” in the graph. 
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We define the slope of a function at a point to be the derivative of the 

function at that point (when it exists). We see that a function does not have a 

well-defined slope at a kink or corner in the graph because the left and right 

limits disagree. Another way the derivative at a point can fail to exist is for 

the function to have a vertical tangent. A popular example of that is 

, if you look at the graph the tangent line is vertical. Vertical lines 

do not have a well-defined slope. 

Example 4.1.1: The absolute value function is . As we have 

discussed it is really a piece-wise defined function. We have  
 

. 
 

It turns out that this function has a kink at zero where it changes from a negative 

slope to a positive slope. This means that the difference quotient has different left 

and right limits at zero. In particular, 
 

 
 

Notice that we replace  with  because in this left limit we allow values to the 

left of zero on the number line, those are negative numbers. Similarly, 
 

 
 

Therefore we can conclude, 
 

 
 

Geometrically this is evidenced in our inability to pick a unique tangent 

line at the origin. Which should we choose, the positive (purple) or the 

negative (green) sloped tangent line? 
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Example 4.1.2: Find the slope of the parabola  at . In 

other words, find the slope of the graph  when .  

We defined the slope of the graph at a point to be the slope of the 

tangent line at that point. So we calculate, 
 

 
 

I have listed more steps than I typically do for such limits. Notice 

the critical thing here is that once the 1 cancels with -1 then all 

terms have a factor of  so it cancels with the  in the 

denominator. We see that the slope of the parabola at the point 

 is . Moreover, we can even find the equation of the tangent 

line as Definition 4.1.1 described, 
 

 
 

It is possible to find the tangent line approximately through 

drawing a careful graph and using a ruler and graph paper. But, 

our results are not approximate. We found the exact result using 

calculus. Here is what it looks like, 
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4.2. DERIVATIVE AS FUNCTION & POWER RULE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now don’t worry too much about the higher derivatives like  quite yet. We’ll 

come back to those once we are more experienced with the first derivative . I 

should warn you that we will proceed logically. Eventually after more work 

on my part we will have tools to treat many of the same problems with much 

less work. That said, we need to start at the beginning. Our goal in the 

remainder of this section is to derive the power rule. If you already know 

these things from high school then keep in mind that I do still expect you to 

learn why these things are true. Don’t be too worried though, these proofs are 

fairly benign and I will give fair warning if I plan to ask a tricky one on a 

test. 

 

1.) Derivative of constant function: . This is a very boring function, no 

matter what the input the output is just the fixed number . 
 

 

In the operator notation we can write this result, 
 

 
 

Here we think of the operator  acting on a constant to return zero. 

 

Definition 4.2.1: If a function  is differentiable at each point in 

 then we define a new function denoted  which is called the 

derivative of . It is defined point-wise by, 
 

. 
 

We also may use the notation . When a function is 

has a continuous derivative on  we say that . If the 

derivative has a continuous derivative  on  then . 

If we can take arbitrarily many derivatives which are continuous  

on  then we say that  is a smooth function and . 
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2.) Derivative of identity function: . 
 

 

In the operator notation we can write this result, 
 

 
 

Yet another way to write this result is that . 

 

3.) Derivative of quadratic function: . 
 

 

In the operator notation we can write this result, 
 

 

 

4.) Derivative of cubic function: . 
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In the operator notation we can write this result, 
 

 

 

Remark: we start to see a few patterns here. It would seem that the 

derivative always has a one power less than the function being differentiated. 

We can see a pattern if we examine the derivatives calculated thus far:   
 

 1.)    

 2.)   

 3.)   

 4.)   
 

I bet most of you could guess that  (and you would be correct). We 

can summarize: 

 
 

this is the so-called Power Rule. I will give examples of how to apply this 

formula in addition to those we have seen so far, but first I owe you a proof of 

this fundamental rule. The proof I give now is for the case that  so 

. We begin by recalling the binomial theorem, 
 

 
 

The symbol  is read “n choose k” due to its application 

and interpretation in basic counting theory, they are also called the “binomial 

coefficients” . There is a neat thing called Pascal’s triangle which allows you 

to calculate the binomial coefficients w/o using the formula.  
 

 

This proof is no good if   , we have no binomial theorem in that case. 

We will learn in a later calculus course that the binomial expansion has 

infinitely many terms when . That said, the power rule is still true in 

the case that , we just need another method of proof. See  4.10. I hope 
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you will forgive me for using the power rule in the case , you’ll just have 

to trust me for now. 

 
 

4.3. LINEARITY OF THE DERIVATIVE 
 

I use both the “ ” and the “prime” notations. 

 
 

Example 4.2.1: How to use the power rule. Most of this example is 

actually just a lesson in notation for power functions. In each case 

below we must express the function as  in order to apply the power rule 
 

 

 

 
 

We should also be able to apply this rule when  is not the 

independent variable. For examples: 
 

 

 

 

 
 

Naturally we most often choose either  or  are the independent 

variable, but we should be able to generalize the pattern of the 

product rule where appropriate. 

Proposition 4.2.1: The derivative  is a linear operator.  If 

 and the functions  and  are differentiable then 
 

 
 

We also can write   
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The proof follows easily from the definition of the derivative. 
 

 

Likewise, 

 
 

While proofs may not excite you, I hope you can see that these are really very 

simple proofs. We didn’t do anything except apply the properties of the limit 

itself ( namely  and  ) to the definition 

of the derivative for the functions  and  respective. 

 
 

 
 

Example 4.3.1: Using the power rule with linearity  
 

 
 

prove linearity works for three objects and I’ll grant a bonus point. 
 

 
 

And most often I will not show all my steps (but you should show 

your steps on the test, especially if I say justify each step) 
 

 
 

We will find other ways to do the next one later, but now algebra is 

our only hope. 
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Example 4.3.2: What is the slope of the line  at the 

point  ? Consider that, 
 

 
 

We find that the slope of the function  is the same at all 

points along the line, it is simply . That is good news, it verifies that 

there is no disagreement between our new calculus based definition of 

the slope and the old standard definition we used in algebra and 

precalculus. Guess what the tangent line to the line is? 
 

 
 

Of course graphically this is obvious, but it is nice to see the 

algebra works out. 
 

Example 4.3.3: What is the slope of  at 

the point  ? Lets calculate the derivative at , 
 

 
 

We see that a parabola will have different slopes at different 

points. Where is the slope zero ? Well we can just set 

 and solve to find . If you are familiar with 

the formulas from algebra for the vertex of a parabola you’ll 

recall that  which makes a lot of sense. The vertex 

will have a horizontal tangent line. 
 

 
 

What is the equation of the tangent line at ? The derivative 

at  is . The equation of the tangent line is 

. 

Why did I avoid asking you what the tangent line was at  ? (subtle) 
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4.4. THE EXPONENTIAL FUNCTION 
 

Transcendental numbers cannot be defined in terms of a solution to an 

algebraic equation. In contrast, you could say that  is not a transcendental 

number since it is a solution to  ( it turns out  has a finite expansion 

in terms of continued fractions, it is a quadratic irrational). Mathematicians 

have shown that there exist infinitely many transcendental numbers, but 

there are precious few that are familiar to us. Probably  is the 

most famous. Next in popularity to  we find the number  named in 

honor of Euler. I can think of at least four seemingly distinct ways of defining 

  We choose a definition which has the advantage of not using any 

mathematics beyond what we have so far discussed. 

 

Let  for some . Lets calculate the derivative of this exponential 

function, we’ll use this calculation to define  in a somewhat indirect manner. 
 

 
 

We will learn that this limit is finite for any . Thus the derivative of an 

exponential function is proportional to the function itself. We can define  

to be the case where the derivative is equal to the function.  

 
 

I’ll give you a bonus point if you can use the definition of derivative and the 

number e to calculate the precise value of . This is a limit of type 

0/0 but the solution is trickier than those limits we’ve done. Later we’ll find 

an easier way to calculate the limit, but by then we’ll also have found other 

tricks to calculate derivatives. As always bonus points are not required so if 

this all seems entirely opaque and/or obtuse feel free to turn the page. 

 

 

 

Definition 4.4.1:  The number  is the number such that 
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Then given that  and  we find 
 

 
 

The exponential function  is a very special function, it has the 

unique property that its output is the same as the slope of its tangent line at 

that point. I have pictured a few representative tangents along with . 
 

 
 

By the way, I sometimes use the alternate notation .  

 

● THE REMAINDER OF THIS SECTION IS TRIVIA. I WILL USE SOME IDEAS WE HAVE YET TO 
INTRODUCE, I JUST WANT THIS INFORMATION IN THE SAME PLACE AS A REFERENCE. 
 

1.) We could define  to be the function such that  then the number 

e would be defined by the function: . This is essentially what we did in 

this section. 
 

2.) The following limit is a more direct description of what the value of e is, 
 

 
 

notice that this limit is type  we have yet to discuss the tools to deal with 

such limits. Many folks take this as the definition of e, so be warned. It turns 

out that L’Hopital’s Rule connects this definition and our definition. 
 

3.) The natural logarithm  arises in the study of integration in a 

very special role. You could define  and then . 
 

4.) The exponential could be defined by  and again 

we could just set , perhaps this is the easiest to find e  

since with just the terms listed we get  not 

too far off the real  This definition probably raises more questions 

than it answers so we’ll just leave it at that until we discuss Taylor series. 



 59

4.5. DERIVATIVES OF SINE AND COSINE 
 

There are a few basic nontrivial limits which we need to derive in order to 

calculate the derivatives of sine and cosine. Most calculus books will show 

you some rather formal and elegant geometric proof. I instead give a heuristic 

proof since I think it gets to the heart of why these limits hold. You are of 

course welcome to look up other proofs if you find mine too common. 
 

 
 

The proof that follows is copied from my first ed. notes, 
 

 
 

Next we show that, 

 

Observe, 
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We now have all the tools we need to derive the derivatives of sine and 

cosine. I should mention that I assume you know the “adding angles” 

formulas for sine and cosine. If you are rusty you can take a look back in my 

notes where I show how to derive those trig. identities from the imaginary 

exponentials; just to be clear which identities I mean to use shortly : 

,   
 

 
 

I think it is interesting that we had to use both of the limits we just found.  
 

 
 

I think you will agree with me that these were harder to derive than the 

power rule. The neat thing is that armed with the few basic derivatives we 

have derived so far we will be able to differentiate just about anything once 

we learn a few more tools such as the product, quotient and chain rules. 

Barring the derivation of those rules this will be one of the last times we use 

the definition of the derivative to calculate a derivative. You see ultimately 

our goal is to calculate things without doing these tiresome limits. What I 

find really interesting is that after we get further into the subject we can 

make the limits disappear. Now, don’t misunderstand me here. The limiting 

concept is important. There are even certain applications where you don’t 

even have a formula for the function, all you have is raw data from some 
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experiment. In those sort of cases you might need to apply the definition 

directly through some numerical methods. In this course we are mostly 

interested with those less interesting problems which allow pen and paper 

solutions. So-called analytic problems. Ok, enough philosophy of calculus, 

let’s get back to work. 

 

To summarize this section so far it’s pretty simple, 
 

 
 

Let’s examine how this plays out graphically, 
 

 
 

I have graphed in red  and in green . Can you see that 

where the sine has a horizontal tangent the cosine function is zero? On the 

other hand whenever sine crosses the x-axis the cosine function is at either 

one or minus one. Question, what is the quickest that sine can possibly 

change? Notice that the slope of the sine function characterizes how quickly 

the sine function is changing. 

 

The graph below has  in red and its derivative  in green. 
 

 
 

Can you see how the derivative and the function are related ? 
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4.6. PRODUCT RULE 
 

It is often claimed by certain students that  but this is almost 

never the case. Instead, you should use the product rule. 

 
 
 

This is known as the product rule for derivatives. I owe you a proof of why 

this works, we will start with the definition of the derivative and then after a 

sneaky step or two we’ll have it. 
 

 
 

I added zero in the third line, a very sneaky move. Then in the next to last 

step I pulled out  which is sensible since it does not depend on h. Then in 

the very last step I used that  which is true since  is 

a continuous function. How do I know that  is continuous given that it is 

differentiable ? That sounds like a good bonus point question. 

 

Proposition 4.6.1: Let  and   be differentiable functions then  
 

 
 

which can also be written  

 

Example 4.6.1: Lets derive the derivative of  a new way, 
 

 
 

We derived this fact from the definition before, I think this way is 

easier. Anyway, I always recommend knowing more than one way to 

understand a mathematical truth, it helps when doubt ensues. 
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You might wonder what happens if we have a product of three things, 

suppose that  are differentiable then, 
 

 
 

so the rule for products of three things follows from the product rule for two 

things. You can derive  by the same logic. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.6.2:  Identify that in the problem that follows  

and  thus by the product rule, 
 

 

 

Example 4.6.3: observe that  and  so by 

the product rule, 
 

 
 

Example 4.6.4:  
 

 
 

Example 4.6.5:  You can combine the product rule with linearity, 
 

 

the possibilities are endless. 
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4.7. QUOTIENT RULE 
 

 
 

This rule actually follows from the product rule.  Let  then 

since  it follows that . That’s a product so we can use 

the product rule; . Solve this for , 
 

. 

 
 
 

 
 

 

Proposition 4.7.1: let  be differentiable functions with  

 

this is called the quotient rule. In prime notation; . 

Example 4.7.1: We already know the derivatives of sine and 

cosine, with the help of the quotient rule we can differentiate the 

tangent function. 
 

 
 

This is the secant function squared. I expect you to remember 

this derivative. You are of course free to derive it if you have 

time. 
 

Example 4.7.2:  

 

Example 4.7.3:  
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Example 4.7.5:  the quotient rule is used in conjunction with other rules 

sometimes, here I use linearity to start, 
 

 
The last couple lines were just algebraic simplification, the most important thing 

here was that you understood how the quotient rule was applied. 

Example 4.7.4: The reciprocal trigonometric functions’ derivatives all 

follow from the quotient rule, 
 

 
 

Likewise the derivative of the cosecant follows from the quotient rule 
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4.8. CHAIN RULE 
 

If I were to pick a name for this rule it would be the composite function rule 

because the “chain rule” actually just tells us how to differentiate a composite 

function. Of all the rules so far this one probably requires the most practice. 

So be warned. Also, let me warn you about notation.  
 

 
 

We have suppressed the  up to this point, reason being that it was always 

the same so we’d get tired of writing the  everywhere. Now we will find 

that we need to evaluate the derivative at things other than just . For 

example suppose that  so we have  then  
 

 
 

We substituted  in the place of . I sometimes avoid the notation  

because it might be confused with multiplication by . The difference should 

be clear from the context of the equation. Sometimes the substitution could 

be more abstract, again suppose  so we have  then 
 

 
 

 
 

Proposition 4.8.1: The Chain Rule states that if  is a 

composite function such that  is differentiable at  and  is 

differentiable at  then 
 

 
 

In words, the derivative of a composite function is the product 

of the derivative of the outside function  evaluated at the 

inside function  with the derivative of the inside function. 
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Please don’t worry too much about all the notation, you are free to just use 

one that you like (provided it is correct of course). Anyway, let’s look at an 

example or two before I give a proof.  

 

 

 

 

 

 

 

 

 

 

 

 

I could also have written my work in the last example as follows, 
 

 
 

Or you could even suppress the  notation all together and just write 
 

 
 

I just recommend writing at least one middle step, if you try to do it all at 

once in your head you are likely to miss something generally speaking. 

 
 

 

 
 

 

 

 

 

 

 

Example 4.8.1: consider  we can identify that this is a 

composite function with inside function  and outside function 

.  

 
 

Example 4.8.2:  

 

Example 4.8.3:  
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Proof of the Chain Rule: The proof I give here relies on approximating the 

function by its tangent line, this is called the linearization of the function. 

Observe that  and we can rewrite the l.h.s. in terms 

of a matching limit .  Thus   
 

 
 

This shows that if  then  which says that 

 . We can make the same argument to show that 

 for small  (the  which is small in the 

argument below since  is finite and ). Consider then, 
 

 
 

So the proof of the chain rule relies on approximating both the inside and 

outside function by their tangent line. Let’s get back to the examples. 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Example 4.8.4:  
 

 
 

Example 4.8.5: let  be a constant, 
 

 

 

Example 4.8.6: let  be a constant, 
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I will neglect the extra  notation past this point unless I think it is helpful,  
 

 

  

 

 

 

 

 

 

I admit that all the examples up to this point have been fairly mild. The 

remainder of the section I give examples which combine the chain rule with 

itself and the product or quotient rules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have to work outside in, one step at a time. Both of these examples 

followed the pattern  which has the derivative 

. Of course, in practice I do not try to 

remember that formula, I just apply the chain rule repeatedly until the 

problem boils down to basic derivatives. 

Example 4.8.7: let  be a constant, 
 

 
 

I let the function be arbitrary , it follows the same pattern as 

the last two examples. This is a common type of example. 

Example 4.8.8: let  be constants, 
 

 
 

Example 4.8.9:  
 

 
 

Example 4.8.10: let  be constants, 
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Example 4.8.11:  

 
 

And we can rearrange this expression using  
 

 
 

Example 4.8.12:  

 
 

The better way to think about this one is that  then the 

differentiation is prettier in my opinion, 
 

 
 

Can you see that these answers are the same? 

Example 4.8.13:  

 

 

Example 4.8.14: observe we can find the power rule from the product rule. 
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In most of the examples we have been able to reduce the answer into some 

expression involving no derivatives. This is generally not the case. As the 

next couple of examples illustrate, we can have expressions that once 

differentiated yield a new expressions which still contain derivatives.  

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.8.16:  
 

 
 

Example 4.8.17: Suppose that  and  are functions of  then, 
 

 

Notice that if  is a constant then  so in that case we have that . 

Example 4.8.18: Suppose that a particle travels on a circle of radius  

centered at the origin. The particle has coordinates  that satisfy 

the equation of a circle; . Moreover, both  and  are 

functions of time . What can we say about  and  ? 
 

 

Notice since the radius  is constant it follows that  is also constant 

thus . Apparently the derivatives  and  must satisfy 

 

Now this says that  ( for points with  ). The position 

vector is  and velocity vector is . The dot-product is 

 

We will learn that when   the vectors  and  are perpendicular. 

So the equation we found involving  and  expresses that 

particles traveling in a circle have velocity which is tangent to the 

circle. (Tangents to a circle meet radial vectors at right angles) 

Example 4.8.15: 
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4.9. IMPLICIT DIFFERENTIATION 
 

Up to this point we have primarily dealt with expressions where it is 

convenient to just differentiate what we are given directly. We just wrote 

down our  and proceeded with the tools at our disposal, namely linearity, 

the product, quotient and chain rules. For the most part this direct approach 

will work, but there are problems which are best met with a slightly indirect 

approach. We call the thing we want to find  then we’ll differentiate some 

equation which characterizes  and typically we get an equation which 

implicitly yields . This technique will reward us with the formulas for 

the derivatives of all sorts of inverse functions. Before we get to the inverse 

functions let’s start with a few typical implicit derivatives. 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.9.1: Observe that the equation  implicitly 

defines  as a function of . Let’s find . Differentiate the given 

equation on both sides. 

 

now differentiate and use the chain rule where appropriate, 

 

Now solve for , 

 

Notice that this equation is a little unusual in that the derivative 

involves both  and . 

 

Example 4.9.2: Observe that the equation  

implicitly defines  as a function of . Let’s find .  

 

 

 

Now solve for , 
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You might question why such differentiation is interesting. One good reason 

is that it is what we use to solve related rates problems. 

 

 

 

 

 

 

 

 

 

 

 

 

So I hope you get the idea about these sort of problems. I’m going to shift 

back to the other type of problem that implicit differentiation is great for. 

That is the problem of calculating the inverse function’s derivative. We know 

the derivatives of . I will now systematically 

derive the derivatives of  using 

essentially the same technique every time. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.9.3: Suppose that we know the radius of a spherical hot 

air balloon is expanding at a rate of 1 meter per minute due to an 

inflating fan. At what rate is the volume increasing if the radius  

is at 10 meters ? To begin we need to recall that the volume  is 

related to the radius according to  for sphere. Then, 
 

 
 

We’ll do more of these in a later section. 
 

Example 4.9.4: let  we wish to find  . To begin we take 

the exponential of both sides of  to obtain 

 

Now differentiate with respect to  and solve for  

 

Now remember that we found  so we have shown that 

 

 

Example 4.9.5: let  we wish to find  . To begin we 

take the cosine of both sides of  to obtain 

 

Now differentiate with respect to  and solve for  

 

Now  thus  but remember that 

we found  so  thus we find 
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I hope you can see the pattern in the last five examples. To find the 

derivative of an inverse function we simply need to know the derivative of the 

function plus a little algebra. The same technique would allow us to derive 

the derivatives of . I have not 

Example 4.9.6: let  we wish to find  . To begin we 

take the sine of both sides of  to obtain 

 

Now differentiate with respect to  and solve for  

 

Now  thus  but remember that 

we found  so  thus we find 

 

 

Example 4.9.7: let  we wish to find  . To begin we 

take the sine of both sides of  to obtain 

 

Now differentiate with respect to  and solve for  

 

Now  thus if we divide this equation by  we’ll 

obtain the less familiar identity . But we know that 

in this example  hence .  To conclude, 

 

 

Example 4.9.8: let  we wish to find  . To begin we 

take the sine of both sides of  to obtain 

 

Now differentiate with respect to  and solve for  

 

The identity  tells us that . But 

we know that in this example  hence .  Thus, 
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included those in these notes because we have yet to calculate the derivatives 

of . Hmmm… maybe I’ll ask those on the 

test. ( hauntingly maniacal laugh follows here ). The next examples follow the 

same general idea, but the pattern differs a bit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

I should mention that I know another method to derive the boxed equation. 

In fact I prefer the following method which is based on a useful purely 

algebraic trick:  so we can just calculate 
 

 
 

but beware the sneaky step, how did I know to insert the  ? I just did. 

 

 

  

 

 

 

 

 

 

 

 

 

 
 

If you have a problem with an unpleasant exponent it sometimes pays off 

take the logarithm. It may change the problem to something you can deal 

with. The process of morphing an unsolvable problem to one which is solvable 

through known methods is most of what we do in calculus. We learn a few 

basic tools then we spend most of our time trying to twist other problems 

Example 4.9.9: Suppose that  we have yet to calculate the 

derivative of this for arbitrary  except the one case . Turns out 

that this one case will dictate what the rest follow. Take the natural log 

of both sides to obtain . Now differentiate, 
 

 
 

we just used Example 4.9.4 to differentiate the . Now solve for  

 

Example 4.9.10: Suppose that . This is not a function we have 

encountered before. It is neither a power nor an exponential function, it’s 

sort of both. I’ll admit the only place I’ve seen them is on calculus tests. 

Anyway to begin we take the natural log of both sides; 

. Differentiate w.r.t  , 
 

 
 

Therefore we find, 
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back to those simple cases.  I have one more basic derivative to address in 

this section. 

 
 

At this point I have derived almost every elementary function’s derivative. 

Those which I have not calculated so far can certainly be calculated using 

nothing more than the strategies and methods advertised thus far. 

 

4.10. LOGARITHMIC DIFFERENTIATION 
 

The idea of logarithmic differentiation is fairly simple. When confronted with 

a product of bunch of things one can take the logarithm to convert it to a sum 

of things. Then you get to differentiate a sum rather than a product. This is a 

labor saving device. 

 

 

Example 4.9.11:  Let  we can exponentiate both sides 

w.r.t. base  which cancels the  in the sense , 
 

 
 

But then since  therefore we conclude, 
 

 
 

Notice in the case  we have  and . So 

this result agrees with Example 4.9.4. 

 

Example 4.10.1: Find the derivative of  using 

logarithmic differentiation. Take the natural log to begin, 
 

 
 

We used the properties of the natural log to simplify as best we 

could before going on to the next step: differentiate w.r.t.  
 

 

 

This is much easier than the 3-term product rule for this problem. 
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Example 4.10.2: Find  via logarithmic differentiation. Let.  

 

Take the natural log to begin, 
 

 
 

We used the properties of the natural log to simplify as best we 

could before going on to the next step: differentiate w.r.t.  
 

 

 

Example 4.10.3: Let  be constants. Differentiate . 

 

Take the natural log to begin, 
 

 
 

We used the properties of the natural log to simplify as best we 

could before going on to the next step: differentiate w.r.t.  
 

 

 

 

Example 4.10.4: Differentiate . 

 

Take the natural log to begin, 
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I wish there was some nice simple formula to break apart  but as far 

as I know , I mean that there is no simple formula to split it up. 

On the other hand we have seen that  is an extremely 

useful property when used together with .  

 

Proof of the Power Rule for any power: 

 

Let  take the natural log to obtain . Differentiate, 
 

 
 

This proof (in contrast to our earlier proof ) works in the case that . 

Somehow these curious little logarithms have circumvented the whole 

binomial theorem. We conclude that for any  

 

 

 

 

 

Example 4.10.5: Sometimes we might have a  to start with, 

but the same algebraic wisdom applies, simplify products to 

sums then differentiate. Find  for . 
 

 
 

Now differentiate w.r.t.   and we’re done. 
 

 

Example 4.10.6: What about  

 
 

We cannot simplify this one because we do not have a product 

inside the natural log. Just differentiate w.r.t    
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4.11. ODDS AND ENDS 
 

This section is mostly optional. I wanted to try a few new things. Also I have 

avoided a few of the hyperbolic functions, I’ll take care of them here as well. 

Let’s do that first. Recall by definition have that 
 

 
 

So the derivatives are easy to calculate, 
 

 
 

In contrast to the cosine derivative in the usual case there is no minus sign 

here. I should mention that if we know about how to see sine and cosine in 

terms of imaginary exponentials then there is a similar calculation we can do 

to find the derivatives of sine and cosine. Logically this may be bit circular for 

most folks who inadvertently use the derivatives of sine and cosine to 

validate Euler’s formula  ( where  ). I don’t 

particularly care at this juncture which is the chicken and which is the egg, 

the point is that the calculations that follow are consistent. Given Euler’s 

formula we can show that  while . 

Consequently,  
 

 
 

Then we assume that the derivatives of imaginary exponentials work the 

same as the derivative of real exponentials that means we ought to have the 

formulas  and . (technically, we should go the other 

direction, the known derivatives of sine and cosine go towards proving that 

). Hence, 
 

 

 

I made use of the imaginary arithmetic  which is a straight-forward 

consequence of the basic identity . Personally I find the similarity of 

the hyperbolic and ordinary trigonometric function a fascinating analogy. 

There are many interrelations; clearly  and . 
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Calculations we can do for the sine and cosine will have corresponding 

calculations that work for sinh and cosh. The bigger lesson here is that the 

distinction between sine, cosine and the exponential function is blurred as we 

transition to the complex case. This I suppose is not too surprising if we just 

think about the way algebra works over real numbers verses complex 

numbers. If we have a polynomial and we look for roots of the polynomial 

that are real numbers we may or may not be successful. Generally speaking 

there will be a product of linear factors which correspond to real roots and 

then a bunch of irreducible quadratic factors which correspond to complex 

roots. So there are different types of factors over the real numbers. In 

contrast once we allow complex roots then we can factor any polynomial into 

a product of linear factors so all the roots look the same from the complex 

perspective. In the same sense the distinction between exponentials and sines 

and cosines vanishes as we allow complex exponentials to enter the scene. 

Let me give an example of the factorization since my comments above may be 

needlessly opaque to you at the present (it’s not really a hard idea) 
 

 
 

Let’s go on and think a little more about how the laws of exponents can tell 

us all sorts of things about trig. identities. It would sure be nice if 
 

 
 

was true. So, let’s assume that is the case. (not very good math logic, but hey 

I’m trying to show you consistency in this section so don’t be too disappointed 

in my shallow logic). Ok, let’s insert sines and cosines and see what we get, 
 

 
 

 On the other hand for the r.h.s. we observe, 
 

 
 

The real and imaginary parts of the equations above have to be 

independently equal. So we can equate these two expressions and find  
 

 
 

Technically, the fact that these “adding angles” trig identities hold true is the 

core of the proof that the complex exponential works, it is not too difficult to 

derive these identities from a few pictures and some basic trigonometry. 

Perhaps I have assigned you such a homework problem. I would argue that it 



 81

is much easier to recover these formulas from the complex exponential in the 

event you forget them. 

 

We can also derive things like the half-angle formulas without much trouble 

 

So what? The point is that if you can just remember that  

and  then almost any trig. identity can be derived in a 

fashion similar to the examples I just gave on the last page. I suppose I 

should admit that the real justification for the complex exponentials working 

as they do is that all of these trigonometric identities can also be derived 

using other arguments. So from a foundational viewpoint I have put the cart 

before the horse. My point to you is that these various interrelationships I 

have explored in this section can be terribly useful, perhaps a good complex 

variables course would go through these arguments in their proper order. 

 

Now let’s think a little more about trig. identities. What can we learn from 

differentiating trig. identities? Will we learn new identities as a consequence 

? Let’s try the Pythagorean identity for sine and cosine, 
 

 
 

Well ok zero equals zero. True, but not particularly enlightening. Let’s try the 

half-angle formula, 
 

 
 

Ah ha, look what we just found, one of my favorite trigonometric identities. 

Its used in the derivation of a pretty formula for the range of a parabolic 

trajectory;  

. 
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One last experiment, suppose we knew just one of the adding angles 

formulas,  
 

 
 

It’s fairly obvious that if we take  to be a constant and differentiate with 

respect to  the we will obtain the other adding angles formula, 
 

 
 

where the minus came from differentiating cosine. What’s the point of all of 

this ? Simply this, the more ways you have to understand something the 

harder it is to forget anything. This is my personal philosophy of calculus, I 

want to know not just one solution, I want to know a whole arsenal of 

solutions for a given problem. Then when I’m faced with a new problem I 

have the advantage of attacking it by a number of angles. Consistency is a 

powerful companion in mathematics, it can get you out of a lot of corners. You 

just have to think outside the box a little. 
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4.12. KNOWN DERIVATIVES 
 

I collect all the basic derivatives for future reference. I do expect that you 

memorize the derivatives of . The rest of these you should 

probably be able to derive or remember as the context suggests. If the 

derivative of  is just a little part of a bigger problem then later in the 

course it is customary to just write down that the derivative is . But, if 

I ask for the derivative of tangent as a stand-alone problem then I probably 

intend for you to go through how we get  from the defn of 

the tangent function and the quotient rule. If you are uncertain of the level of 

detail I wish to see then please ask me before the test is finished. 

 

  Comments about   Formulas I use 

 0 constant function  

  line  has slope 1  

    

    

  power rule  

  the exponential  

    

  an exponential  

  the natural log ,  

  log base 10  

  log base  ,  

    

    

    

  reciprocal of cosine  

  reciprocal of tangent  

  reciprocal of sine  

  inverse sine  

  inverse cosine  

  inverse tangent  

  hyperbolic sine  

  hyperbolic cosine  

  hyperbolic tangent  

  inverse sinh  

  inverse cosh  

  inverse tanh  
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The formulas given in the table are not exhaustive. I know of many other 

useful formulas for these basic functions. You may consult Chapter 2 for more 

of those details. Finally, let us conclude this chapter with a list of useful rules 

of differentiation. These in conjunction with the basic derivatives we listed 

earlier in this section will allow us to differentiate almost anything you can 

imagine. ( this is quite a contrast to integration as we shall shortly discover)  

 

 
name of property operator notation  prime notation 

Linearity   

  

  

 

 
   

 
   

 

Product Rule   

  

  
 

 

 
   

Quotient Rule  

  

 

   

Chain Rule  

  

 

 
   

 

Beyond these basic properties we have seen in this chapter that the 

technique of implicit differentiation helps extend these simple rules to cover 

the inverse functions. It all goes back to the definition logically speaking, but 

it is comforting to see that once we have established the derivatives of the 

basic functions and these properties we have little need of applying the 

definition directly. I would argue this is part of what separates modern (say 

the last 400 years) mathematics from ancient mathematics. We have no need 

to calculate limits by some exhaustive numerical method. Instead, for a 

wealth of examples, we can find tangents through what are essentially 

algebraic calculations. This is an amazing simplification. However, more 

recent times have shown computers can model problems which defy algebraic 

description. We truly have many options in present-day mathematics. 
 


