Chapter 1

Fiber Bundles

‘Definition 1.1 A fiber bundle is a mapping 7 from a manifold E onto a
manifold M subject to the following properties:

1. w 18 smooth and surjective.

2. There exist a manifold F, called the fiber of m, and an open cover U
of M along with a corresponding family of mappings Yy : m~H(U) —
UxF,UelU, such that

(a) Yy is a _diffeomorphism and

(b) If my is the projection of U x F onto U, then my(dy(y)) = n(y)
for ally € = 1(U).

Condition (2b) is usually ezpressed by saying that the diagram
Y U) X UxF
™ \N \/WU
U

is commutative. Moreover, the mappings {tutveu are said to be local trivi-
alizing mappings of the bundle.
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Notice that if up € U,U € U, then 77 (uo) is a submanifold of 7~Y(U) C E
which is diffeomorphic to the fiber F' of 7. To see that this is so, observe
that y € 771(U) is mapped to ug by 7 iff 7y (vy(y)) = uo, and this is true iff
Yy (y) = (uo, f) for some f € F. Thus,

7 uo) = {y € 7 (U)ly = v (uo, f), f € F}

and
7 uo) = Yy ({uo} x F).

Definition 1.2 If7: E — M is a fiber bundle, then E is called the bundle
space or simply the bundle of 7 and M is called the base space or base or 7.

Definition 1.3 If 7 : E — M is a fiber bundle, then s is a local section of
7 iff 5 is a smooth mapping from some open subset U C M into E such that
mos=1dy. The local section s is called a global section of 7 iff U = M.

Exercise 1.1 Show that s(U) is a submanifold of £ which intersects each
fiber 77 (u) over points u € U in one and only one point.

Observe that every point m € M is in the domain of some local section
of . To prove this, choose a local trivializing mapping ¥y : 7=(U) — U x F'
such that m € U. Let fo denote any element of F, the fiber of 7, and define
s:U — E by :
, S(‘”) = 7/’51(1;7 fO)
for each ¢ € U. Clearly s is smooth and 7y (¢ (s(z)) = n(z, fo) = z and thus
7(s(z)) = z for all z € U.

It follows that there is a family of local sections {sy}yey of m whose
domains cover the base space M. For many mappings 7 : £ — M, having
such a family {sy} of local sections implies the existence of a family {yy }vey
of local trivializing mappings and thus implies that 7 is a fiber bundle. This
need not hold in general, however.

Definition 1.4 If my : By — My and 7y : Ey — My are fiber bundles with
fibers Fy and Fy, respectively, then the pair of functions (®,¢) is a bundle
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isomorphism from m to m iff © is a diffeomorphism from Ey to Es, ¢ is a
diffeomorphism from M to M, and the diagram

B 2 B
m 1
M, 2 My

is commutative. In this case, the fiber Wfl(z) of By over ¢ € M; is mapped
diffeomorphically by ® onto the fiver w3 (¢(x)) of By over ¢(z). In particular,
Fy is diffeomorphic to Fp. A fiber bundle w : E — M with fiber F' is said to
be trivial iff it is bundle isomorphic to the product bundle mpr : M X F' — M
(note that the product bundle possesses a single trivializing mapping with

U= MU= {U},¢v = iduxr).

Finally, observe that if 7 : £ — M is any fiber bundle with local trivializing
mappings {¢utvey then 7|~y : 7Y (U) — U is itself a fiber bundle with
a single local trivializing mapping 1y, and in fact 7|1y is isomorphic to a
trivial fiber bundle, namely 7y : U x F' — U. Moreover, (¢y,idy) is a bundle
isomorphism from 7|,-1() to my. Thus, every fiber bundle is locally trivial in
this sense, but most interesting fiber bundles are nontrivial.

Examples
1. If M is a manifold, then 7 : TM — M is a fiber bundle. To see this,
notice that if (U, z) is any admissible chart of M, then
7Y (U) = TU = {(m,v)|m € U,v € T,,M}.
Let dz : TU — z(U) x R"™ be the mapping defined by dz(m,v) =
(z(m), dmxt(v)r;). Local trivializing mappings {4y} may be defined in
terms of these charts (TU, dx) of TM by
Yy = (z 7 oidgra) odz : 7 H(U) — U x R™
Thus, the diagram
U (U) 2 g(U)x R* © 297 g x R7

N\ Sy
U
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is commutative and defines the bundle structure of . Note that the
fiber of the bundle is R™, where n = dim M. Observe that if M does
not have a well-defined dimension (if it varies from component to com-
ponent) then 7'M is not a fiber bundle.

. If M is a manifold and T*M is the cotangent bundle, then the projec-
tion 7* : T*"M — M is a fiber bundle (assuming M is n-dimensional).
Its fiber is (R™)*, and trivializing mappings 1y may be defined by

J7)

. Foreach 1 <k <mn,m:A*M — M is a fiber bundle. The fiber is
AFR™, and trivializing mappings are defined by

9 9 )(rﬁ/\---/\r"k)).

’(/)U(m> CU) - <m7 84 <8$11 PR it m
. Let M be a manifold. We define a fiber bundle called the frame bundle
of M. The bundle space is denoted FM; it is the set of all ordered
pairs (m, {e;}) where m € M and {e;} is a basis of T}, M. Such a basis
is called a frame at m and thus FM is a bundle of frames of M. The
fiber bundle mapping is 7 : FM — M defined by n(m,{e:}) = m; it
designates the point at which the frame {e;} is attached. We show that
FM is a manifold and that 7 : M — M is a fiber bundle with fiber
the group GI(R™) of all nonsingular n x n real matrices. We elaborate
in some detail the structure of 7 : FM — M.

Yu(m,a) = <m, o (8?3*

where (U, z) is an admissible chart of M.

m

First observe that if m € M then 7~*(m) is the set of all frames at m.
If (m, {e;}) and (m, {fi}) are two points in the fiber 7~}(m) then they
are related via a unique n X n matrix A such that

fj = A§ei.

This suggests that the fiber is GI(R") and how to get charts and local
trivializing mappings. Choose any admissible chart (U, z) of M. Let

FU = {(m,{e;})|m € U}



Chapter 1. Fiber Bundles 5

and let Fz : FU — z(U) x GI(R™) be defined by
(Fz)(m, {e:}) = (&(m), (dm’ (e1))).

Thus, (Fz)(m, {e;}) = (z(m), A) where A is the n x n matrix defined
by
Al = dpa? (e;).

A is invertible since both {e;} and {5% m} are bases of T,,,M and

!
w4 (53),)

Moreover, Fz maps FU onto all of z(U) x GI(R"). We leave it as an
exercise to show that if Ay, is an admissible atlas of M then

A= {(FU, Fx)|(U,z) € A}

is an atlas of M. Moreover, GI(R™) is an open subset of g/(R™), which
may be identified with R™. Finally ¢y : n=(U) — U x GI(R") is a
local trivializing mapping if we define it by

Py = (CII—l 0 idGl(Rn)) o Fux.

5. Let M be a manifold and g a metric on M. Then g is a type <821
tensor field on M which is symmetric and nondegenerate and whic
has constant index k = n — p. For each m € M, g,, is a metric on
T M and thus there is a g-orthonormal basis {e;} of T;, M such that
{jlgm(e;,e;) = —1} has k elements in it. By reordering this basis if
necessary we obtain

gm(ei,ej) = Gy,
where
0 i#7
Gij—-_—{l 1=751<7<p
~1 t=3,p+1<i1< n.
Define O;M = {(m,{e;}) € FM|gm(es,e;) = Gi;}. We claim OgM 5

M,n(m,{e;}) = m, is a fiber bundle. This is not difficult to prove,
given the following Theorem.
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Theorem 1.1 If M is a manifold and g is a metric on M with index
k =mn —p, then for each mg € M there exist an open set U about my
and vector fields {%;} on U such that

gm(%i(m), 2;(m)) = Gy
for allm e U.

We first show how to use the theorem to prove that O,M 5 M is a
fiber bundle, after which we will prove the Theorem.

Let O(p, k) = {A € GI(R")|ATGA = G} . We leave it as an exercise to
be proven later that O(p, k) is a manifold. We show that = : O,M — M
is locally trivial with fiber O(p, k). By the Theorem there is an open
cover U of M such that for each U € Uf there exist vector fields {%;}]_,
defined on U such that

gm(Xi(m), %;(m)) = Gy
for all m € U. Define a mapping
Yy 7N U) — U x O(p, k)

by .
bu(m, {e:}) = (m, (E7(m)(es)))

where =7 is the differential form defined on U by
= (m)(x:(m)) = 6],
To show that the matrix A whose components are

N = (m)(e)

is actually in O(p, k), observe that e; = Af%,(m) and
Gij = gm(ei, &5) = AP A gm (%6(m), %1(m))
and

G} =2 (AN)GE = (ATGN).
kl
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So G = MTGX and A € O(p, k) as required. It follows that 1y maps
771 (U) into U x O(p, k). Moreover, ¢y has an inverse and in fact

Y (m, (\)) = (m, M%;(m)).

The mappings {4v}ye, have the formal requirements of local trivializ-
ing mappings but they must also be smooth. So one needs a manifold
structure on O,M such that the maps {¢y} are diffeomorphisms. One
defines such a structure on O,M as follows.

First observe that it is no loss of generality to assume that for each
U € U, U is a subset of the domain of some chart of M. Let A(p, k)
denote an atlas of admissible charts of O(p, k). For each U € U and
each chart y € A(p, k) let = denote an admissible chart of M defined
on U and let U(y) = v (U x V,) where V,, C O(p, k) is the domain of
y. Finally define a chart 7, : U(y) — z(U) x y(V4) by

’f7y=(93><y)01/fU'

It is easy to show that A = {(U(y), n,)|U € Aum,y € A(p, k)} is an atlas
on O,(M) and this defines a differentiable structure on O4(M). More-
over, relative to this structure the mappings {1y}, are all smooth.
Indeed, if one chooses a point of 7#~1(U) for some U € U, then that
point is in U(y) = ¥5*(U x V,) for some V,, and one can show that ¢y
restricted to U(y) is smooth by considering its local representatives.
We see from the commutative diagram

U, P, UxV,

Ty i ) ) lzxy

2(U) x y(V;) “=F a(U) x y(V)

that the identity mapping is the local representative of ¢y relative to
the charts 7, and = x y and so ¢y is indeed smooth.
To complete the proof one needs to prove Theorem 2.1 above.

Proof of Theorem 2.1. The proof requires a number of steps. Through-
out the proof let mg € M and let (W, Z) denote an admissible chart of
M such that mq € W.
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Step II:
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The chart £ may be modified to obtain a new admissible chart z
defined on an open subset of W such that

a o}
e (5‘ = ) = G
mg mo
To see this, first choose any frame {e;} at mg such that g, (e;, ;) =
G;;. Let A be any matrix such that ‘—9%1 = Ale;. Define z* =
. mo
Aiz* on all of W; then
9| _oP (o] \_ (o],
6c'| oz \ozr| ) “i\ewr| )T
mo mo mg
~and consequently
o a
Imo (839" ™mo 7 5;? mo) B Gij.

This proves Step L.
Notice that a consequence of Step I is that

o 0
g'rno (8(1)7‘ mo) = &ij

Y
o oxJ
for 1 <4,5 < p. We eventually show that this holds for all m in
some open set about mg and we characterize a maximal subset on
which g, is positive definite.

A
-+ o %
Lot Tt M = {;x (axi

that there is an open subset O,,, C W containing mg such that
for each m € Oy, g restricted to Tit M is positive definite.

Proof of Step II. Let S denote the unit sphere in RP. Thus X € S
p .
iff 3 "(\*)? = 1. Define a function H : § x W — R by

)

> = R} for each m € W. We show

H(X,m) = gn (i)\i ((‘)ii

i=1

P 9
N PR
) (o

J
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The mapping H is continuous, and

H(X,mq) = zpjx' 0 fj,\j 2
y Mo = gm p 8$i o 7]-:1 831-7 e
P P o
= > > NNby
i=1 j==1

= gjl(,\k)? = 1.

For each \ € S, let Us be open about Xin S and Os open about
mg in M such that H is positive on U x Oy. There exists a finite
number of the sets Uy which covers 5, Uy, ..., U, . Let

o
Uo =Uy: and Op = Oy

N
Let Omy = [} Oa. For (\,m) € S X Op, we see that A € Uy,
=1
for some g and, since m € O, for all o, we see that (X, m) €
Ugo X O, and thus H(A,m) > 0. So H is positive on S X Oy,.
We claim g, is positive definite on T,t M for all m € O,,,. To
see this, let m € Om, and V € T} M such that v # 0. Then
P P
v=> X\ (aii ) and »_(X*)* # 0. Let
i=] mo i=

1

and observe that

where

P A 2-. P ()\1)2 _
§<HAH> “2[25?:1@9)2] '
1 1 1 1 by
Thus gm(—=v, =) = —=—gm(v,v) and —s—gn(v,v) = H(-—=—,m
o e = e e e = g

0. Thus gm(v,v) > 0 as required. So g, is positive definite on
T M for all m € O, and Step II follows.
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Notice that for each m € Oy, { 52 m} is a basis of ;> M. We may
apply Gram-Schmit orthogonalization to this basis to obtain a
gm{ (Th M x T;¥ M) orthogonal basis of T M. Let {&(m)} denote

this basis. An examination of the orthogonalization process shows
that the resulting vector fields {&;} on O,,, are in fact smooth and
so one has vector fields {£}7_; on Oy, such that

gm (&(m), &;(m)) = b5

, forallm € Oy, 1 <14,5 < p.

Step III: Let T, M denote the g,, orthogonal complement of THAM in T, M
for each m € Op,y. We claim that T,M = T2M & T M for
all m € O, and that the restriction of g,, to T, M is negative
definite.

Proof. Let v € T,,M, m € Op,,. We show that v = v+ + v~ for
some vt € TF M, v~ € T,, M. Define v+ by

P
vF =3 gm(v, &(m))E; (m).
j=1
Note that

9n(0 =0, E(m)) = G0, E(m)) — " g, E5(m)) g (&5 (m), (m))

=1

= G &(m)) = 3 gm0, ()i = 0.

j=1

Since this holds for all &(m) and since {£;(m)} is a basis of T M
we see that v — v is in the gn-orthogonal complement of Tt M
in M and thus v — vt € T M. If we let v~ = v — vt we
have v = v¥ + v~ as we require. To see that the sum is a direct
sum note that if v € TfM NT; M then v € TX M is such that
gm(v,v) = 0 and since g,, is positive definite on Tt M, v = 0.
Thus T, M = T M & T M.

We now show that g,, restricted to T~ M is negative definite. As-
sume this is not so; then an orthonormal basis { fi}iepss of T M
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exists for which there is at least one p+ 1 < j < n such that
gm(fj, f;) = 1. It follows that

51(m),§2(m), s 7§p(m):fp+1afp+27 o '7fm

is a gm-orthonormal basis of 77, M such that g, (&(m),&(m)) =
1,1 <t < p, and gn(f;, f;) = 1. This implies that the index of
Gm 1s less than n — p, contrary to hypothesis. It follows that g,
restricted to 7., M is negative definite.

Proof of the Theorem itself. Let p, @ TmyM — T M denote
the orthogonal projection of T,,M onto T, M. Recall this may
be defined by pn(v) = v~ where v = v™ + v~ is the decomposi-
tion in Step III. Let w € T,,M and write w = w™ + w™. Since

n 1o}
. Tm y T o= T - d
w” €M, w ;u <5x’m>an

n 5 >

pm(w™) = g#iﬂm<5g
. id 0
m) + Z HiPm. (@

4=l
i=p+1
m)

L 0

- ;uipm(——ami
- _ = 0
Sow”™ = pm(w”) = Y wipm (——axi

)

ge=1
> om0
= HiPm | =7
i1 Ozt

) . The metric —g,, is pos-

i=p+1 m

itive definite on T, M and so we can apply Gram-Schmit orthog-
onalization to the vector fields

Pm\ 9a
on Op,,. We obtain vector fields &,41, ..., & on Opny, such that

(=gm) (&i(m),&;(m)) =6i; , p+1<4,7<n

for all m € O,,,. Thus we have vector fields £;,&s,...,6, on Oy,
such that

) , p+H1<i<n

gm (&i(m), & (m)) = Gy
for all m € Op,.



12 Chapter 1. Fiber Bundles

Definition 1.5 A fiber bundle w : E — M is called a vector bundle iff

1. the fiber of the bundle is a vector space V,
2. there 1s a family of local trivializing mappings ¥y : #=Y(U) — U x

V,U € U such that if Uy, Uy € U and Uy NUy # 0, then for each
m € Uy NU, the mapping from V to V defined by

L=y (’lpUz ("/1(}11(7'”'7 .’E)))

15 @ vector space 150morphisii.

Observe that in this case there ezist well-defined continuous operations + and
- on each fiber 1 (m), m € M. These operations are defined by

vtw = gyt (m,my (Yy(v)) + mv (Pu(w)))
cw = Y (m,c- v (Yo())).

Exercise 1.2 Show that TM, T* M, A*M are vector bundles.

Definition 1.6 Two vector bundles (Ey, M1, m1) and (Ey, Ma, m) are vector
bundle isomorphic iff there ezists a fiber bundle isomorphism (®, ¢) from
to my such that for each m € M the restriction of ® to 77 (m) is a vector
space isomorphism from w7 (m) onto w5l (¢(m)).

Examples

1. Let N denote Newtonian space, i.e. NV is a manifold with an atlas A
such that

(a) if z,y € A then y o z7" is a rigid motion of R3
(b) if z € A and ¢ is a rigid motion of R then ¢poz € A.



Chapter 1. Fiber Bundles 13

Let SN = R x N denote the bundle space of the trivial bundle
wr : SN — R,mp(t,z) = t. Observe that trajectories of objects
in Newtonian space are described by local sections of this bundle:
4(t) = (t,7(t)) where v(t) € is the position of the object at time ¢.

d d
The velocity of the object is i (3(t) = pr (v(t)) . We thus see that

Newtonian spacetime is a fiber bundle over time-axis but Minkowski
spacetime is not.

2. Let @ be the configuration space of a system of particles. The time evolution
of the system is a section of the trivial bundle R x TQ — R.

3. Let M denote Minkowski spacetime. The electromagnetic field tensor
is a section of the bundle A2M — M, a trivial fiber bundle which is not
obviously trivial. Similarly vector potentials are sections of the bundle
A'M — M.

4. Let M denote Minkowski space and ¢ : M — C? a spin field. Note that
this defines a section 1 (z) = (z,%(z)) of the trivial bundle M x C* —
M.

These examples show that most dynamical fields in physics may be viewed
as (local) sections of some fiber bundle.

It is our intent to formulate a theory in which all Lagrangians have domain
an appropriate fiber bundle.

Definition 1.7 Ifm: E — M is a fiber bundle with fiber F' and (U, %) is an
admissible chart of E then we say that this chart is adapted to the bundle
7 iff #(U) is open in M and there is a chart T of M defined on w(U) such
that g* = Tt om for 1 < pu < n, n = dim M. In this case we often write
gt =FFom, 1< pu<n, and y* = §°t" for 1 < a < N where N = dim F.

Exercise 1.3 If 7 : E — M is a fiber bundle and y € E then there is an
adapted coordinate system at y.

Note that if u € E and w € T, F such that d,m(w) = 0 then

N o
’L(J:Zwa<8ya >

a==]
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Indeed, in general, w = »_ w" (5%- ) . But dyz#(w) =

p=1
dz* (dym(w)) = 0 and also

N 0
+ o —
w> a;w <0y”

w

)+

0

duzt(w) = dz* (; w” ( VT 0

w> +;wa<5y“

J

Thus w* =0for 1 <pu<nand

N
AN,
w=3u <8y“

a==1

as asserted.

Definition 1.8 If 7 : E — M is a fiber bundle then a tangent vector w €
TWE atu € E is vertical iff dym(w) = 0. A curve y:I — E in E is vertical
iff v'(t) € Ty E is vertical for allt € 1.

Exercise 1.4 Show that a curve v : I — E is vertical iff the image of vy lies
in a single fiber of £.

Definition 1.9 If 7 : E — M is a fiber bundle and yo € E then J,F
denotes the set of all linear mappings v : Tryg M — Ty E such that

dyom 0y = idr,  u-

If JE = {(y,fy)‘y € Eandy € JyE} then we will show that the mapping

ng : JE — E defined by mg(y,v) =y defines a fiber bundle structure. This
fiber bundle is called the first order jet bundle of the fiber bundle 7 : E — M.

Theorem 1.2 If 7 : E — M is a fiber bundle and v € JyE, then T,E =
Im~ & Kerdym. Moreover there is a local section s : U — E of © such that
s(z) =y and v = dys where z = 7(y).
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Proof. First we show that T, E = Imy@Kerd,n. Let w € T, E' and notice
that

dym (w =y (dyr(w))) = dym(w) = dym (7 (dym(w)))
= dyn(w) — dyw(w) = 0.

So w — 7y (dym(w)) € Kerdyn and if we let k = w — v (dyn(w)) then w =
v (dyn(w)) + k € Im~y + Kerd,m. Also observe that if w € Im~ N Kerd,n
then w = ~y(v) for some v € Tr(,)M and dym(w) = 0. Thus v = dy7 (v(v)) =
dym(w) = 0 and w = y(v) = 0. So w € ImyNKerdyn = 0 and T, F =
Im~y & Kerd,r.

To prove the second part of the theorem, let (ff , TH y“) denote an admis-
sible chart of £/ which is adapted to the fiber bundle structure 7 : £ — M. If
(z*) is a chart of M on 7 <US such that z# = T* o 7 then ~ has the property

@-(2)se) o

for some set of numbers v;, € R. This follows jfrom the fact that v maps

T, M to TyE and thus
OV (2] (2
T\ Bze| ) T %\ B T Aye| |-
T Y Yy
= Bar
)=

On the other hand the fact that d,= (fyz (é—g;
¢y, and (??7) holds. To show that there exists a mapping s satisfying the
conclusion of the theorem we prescribe the components of s in the chart
(z#,y*) and thus prescribe s itself. We want s(z) = y so we must require
thatzt(s(z)) = z#(y) and y*(s(z)) = y*(y) forall 1 < p < n,1 <a < N.
Moreover we require that d,s = -y and since for every local section s

)

3] B . 0 “ . 2]

duS(@i") = 8,,(33”03033 )(55;)4—8,,@ 0s0T ><5‘y“
_ 0 n d(y*os) [ O

— \ Oz N oz dy?|,

o Oy*os)
,Yl/ - ai,,, (37)

implies that aj, =
z

we must have
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So, essentially we must prescribe the terms of the “first order Taylor polyno-
mial” of s in order to obtain the desired properties: s(z) =y, dzs = 7. Thus
we want s to satisfy the conditions:

(s(u)) = z*(n(s(u)) = 2#(u)
{y“(sw)) = y*(y) + 72 (7 (u) — (). (1.2)

When these conditions hold we see that

zh(s(z)) = () = 2*(n(y)) = 2" (v),
y*(s(z)) = ¥*(v)

and so s(z) = y. Moreover
a(y OS) e 6# (yao SOE_I)

OTH
u{v(w) +72 (@ 07 ™) = (3 0 57")(3(x))) }
= 0=

It follows that o )
y*os oz
~ g (W=
for all u and thus for u = z. Finally observe that the equations (7?) may
indeed be imposed on s on some open subset U about z lying in the image

of w(U) since they hold at u = & itself. The theorem follows.

Definition 1.10 [f7: E — M is a fiber bundle and g € M then two local
sections sy and sy of 7, each defined on an open subset of M containing xq,
are said to be 1-jet equivalent iff s1(zo) = s2(z0) and deysy = dgys2. Thus s;
and so must define the same point yo = s1(zo0) = 52(z0) of E and the same
element dzy81 = dyy52 € JyoF. Observe that for fized zo € M the notion of
1-jet equivalence defines an equivalence relation on the set of all local sections
of m defined at . Given such a local section s denote the equivalence class
determined by s by (js)(zo). Observe that one obtains a mapping js from
the domain of s into JE and moreover that (js)(z) = (s(z),ds) for each
-z € doms. We show that the mappings 7g : JE — E and myy : JE — M
defined by me(y,7) = v, 7m(y,y) = w(y) are fiber bundles and that js is a
local section of myr for each local section s of m: E — M.



