Chapter 1

Fiber Bundles

Definition 1.1 A fiber bundle is a mapping π from a manifold E onto a manifold M subject to the following properties:

- 1. π is smooth and surjective.
- 2. There exist a manifold F, called the fiber of π , and an open cover \mathcal{U} of M along with a corresponding family of mappings $\psi_{\mathcal{U}}: \pi^{-1}(\mathcal{U}) \to \mathcal{U} \times F$, $\mathcal{U} \in \mathcal{U}$, such that
 - (a) ψ_U is a diffeomorphism and
 - (b) If π_U is the projection of $U \times F$ onto U, then $\pi_U(\psi_U(y)) = \pi(y)$ for all $y \in \pi^{-1}(U)$.

Condition (2b) is usually expressed by saying that the diagram

$$\begin{array}{ccc}
\pi^{-1}(U) & \xrightarrow{\psi_U} & U \times F \\
\pi & & \swarrow \pi_U
\end{array}$$

is commutative. Moreover, the mappings $\{\psi_U\}_{U\in\mathcal{U}}$ are said to be local trivializing mappings of the bundle.

Notice that if $u_0 \in U, U \in \mathcal{U}$, then $\pi^{-1}(u_0)$ is a submanifold of $\pi^{-1}(U) \subseteq E$ which is diffeomorphic to the fiber F of π . To see that this is so, observe that $y \in \pi^{-1}(U)$ is mapped to u_0 by π iff $\pi_U(\psi_U(y)) = u_0$, and this is true iff $\psi_U(y) = (u_0, f)$ for some $f \in F$. Thus,

$$\pi^{-1}(u_0) = \{ y \in \pi^{-1}(U) | y = \psi_U^{-1}(u_0, f), f \in F \}$$

and

$$\pi^{-1}(u_0) = \psi_U^{-1}(\{u_0\} \times F).$$

Definition 1.2 If $\pi: E \to M$ is a fiber bundle, then E is called the bundle space or simply the bundle of π and M is called the base space or base or π .

Definition 1.3 If $\pi: E \to M$ is a fiber bundle, then s is a local section of π iff s is a smooth mapping from some open subset $U \subseteq M$ into E such that $\pi \circ s = \mathrm{id}_U$. The local section s is called a global section of π iff U = M.

Exercise 1.1 Show that s(U) is a submanifold of E which intersects each fiber $\pi^{-1}(u)$ over points $u \in U$ in one and only one point.

Observe that every point $m \in M$ is in the domain of some local section of π . To prove this, choose a local trivializing mapping $\psi_U : \pi^{-1}(U) \to U \times F$ such that $m \in U$. Let f_0 denote any element of F, the fiber of π , and define $s: U \to E$ by

$$s(x) = \psi_U^{-1}(x, f_0)$$

for each $x \in U$. Clearly s is smooth and $\pi_U(\psi_U(s(x))) = \pi(x, f_0) = x$ and thus $\pi(s(x)) = x$ for all $x \in U$.

It follows that there is a family of local sections $\{s_U\}_{U\in\mathcal{U}}$ of π whose domains cover the base space M. For many mappings $\pi: E \to M$, having such a family $\{s_U\}$ of local sections implies the existence of a family $\{\psi_U\}_{U\in\mathcal{U}}$ of local trivializing mappings and thus implies that π is a fiber bundle. This need not hold in general, however.

Definition 1.4 If $\pi_1: E_1 \to M_1$ and $\pi_2: E_2 \to M_2$ are fiber bundles with fibers F_1 and F_2 , respectively, then the pair of functions (Φ, ϕ) is a bundle

isomorphism from π_1 to π_2 iff Φ is a diffeomorphism from E_1 to E_2 , ϕ is a diffeomorphism from M_1 to M_2 , and the diagram

$$\begin{array}{ccc} E_1 & \stackrel{\Phi}{\longrightarrow} & E_2 \\ \pi_1 \downarrow & & \downarrow \pi_2 \\ M_1 & \stackrel{\phi}{\longrightarrow} & M_2 \end{array}$$

is commutative. In this case, the fiber $\pi_1^{-1}(x)$ of E_1 over $x \in M_1$ is mapped diffeomorphically by Φ onto the fiber $\pi_2^{-1}(\phi(x))$ of E_2 over $\phi(x)$. In particular, F_1 is diffeomorphic to F_2 . A fiber bundle $\pi: E \to M$ with fiber F is said to be trivial iff it is bundle isomorphic to the product bundle $\pi_M: M \times F \to M$ (note that the product bundle possesses a single trivializing mapping with $U = M, \mathcal{U} = \{U\}, \psi_U = \mathrm{id}_{M \times F}$).

Finally, observe that if $\pi: E \to M$ is any fiber bundle with local trivializing mappings $\{\psi_U\}_{U \in \mathcal{U}}$ then $\pi|_{\pi^{-1}(U)}: \pi^{-1}(U) \to U$ is itself a fiber bundle with a single local trivializing mapping ψ_U , and in fact $\pi|_{\pi^{-1}(U)}$ is isomorphic to a trivial fiber bundle, namely $\pi_U: U \times F \to U$. Moreover, (ψ_U, id_U) is a bundle isomorphism from $\pi|_{\pi^{-1}(U)}$ to π_U . Thus, every fiber bundle is locally trivial in this sense, but most interesting fiber bundles are nontrivial.

Examples

1. If M is a manifold, then $\pi: TM \to M$ is a fiber bundle. To see this, notice that if (U, x) is any admissible chart of M, then

$$\pi^{-1}(U) = TU = \{(m, v) | m \in U, v \in T_m M\}.$$

Let $dx: TU \to x(U) \times \mathbb{R}^n$ be the mapping defined by $dx(m, v) = (x(m), d_m x^i(v) r_i)$. Local trivializing mappings $\{\psi_U\}$ may be defined in terms of these charts (TU, dx) of TM by

$$\psi_U = (x^{-1} \circ \mathrm{id}_{\mathbf{R}^n}) \circ dx : \pi^{-1}(U) \to U \times \mathbf{R}^n.$$

Thus, the diagram

$$\pi^{-1}(U) \xrightarrow{dx} x(U) \times \mathbf{R}^n \xrightarrow{x^{-1} \times \mathrm{id}_{\mathbf{R}^n}} U \times \mathbf{R}^n$$

$$U$$

$$U$$

is commutative and defines the bundle structure of π . Note that the fiber of the bundle is \mathbf{R}^n , where $n=\dim M$. Observe that if M does not have a well-defined dimension (if it varies from component to component) then TM is not a fiber bundle.

2. If M is a manifold and T^*M is the cotangent bundle, then the projection $\pi^*: T^*M \to M$ is a fiber bundle (assuming M is n-dimensional). Its fiber is $(\mathbf{R}^n)^*$, and trivializing mappings ψ_U may be defined by

$$\psi_U(m,lpha) = \left(m,lpha\left(rac{\partial}{\partial x^i}igg|_m
ight)r^i
ight),$$

where (U, x) is an admissible chart of M.

3. For each $1 \le k \le n$, $\pi : \bigwedge^k M \to M$ is a fiber bundle. The fiber is $\bigwedge^k \mathbf{R}^n$, and trivializing mappings are defined by

$$\psi_U(m, lpha) = \left(m, lpha \left(\left. rac{\partial}{\partial x^{i_1}} \right|_m, \ldots, \left. rac{\partial}{\partial x^{i_k}} \right|_m \right) \left(r^{i_1} \wedge \cdots \wedge r^{i_k} \right)
ight).$$

4. Let M be a manifold. We define a fiber bundle called the *frame bundle* of M. The bundle space is denoted $\mathcal{F}M$; it is the set of all ordered pairs $(m, \{e_i\})$ where $m \in M$ and $\{e_i\}$ is a basis of T_mM . Such a basis is called a *frame* at m and thus $\mathcal{F}M$ is a bundle of frames of M. The fiber bundle mapping is $\pi: \mathcal{F}M \to M$ defined by $\pi(m, \{e_i\}) = m$; it designates the point at which the frame $\{e_i\}$ is attached. We show that $\mathcal{F}M$ is a manifold and that $\pi: \mathcal{F}M \to M$ is a fiber bundle with fiber the group $Gl(\mathbf{R}^n)$ of all nonsingular $n \times n$ real matrices. We elaborate in some detail the structure of $\pi: \mathcal{F}M \to M$.

First observe that if $m \in M$ then $\pi^{-1}(m)$ is the set of all frames at m. If $(m, \{e_i\})$ and $(m, \{f_i\})$ are two points in the fiber $\pi^{-1}(m)$ then they are related via a unique $n \times n$ matrix A such that

$$f_j = A_j^i e_i.$$

This suggests that the fiber is $Gl(\mathbb{R}^n)$ and how to get charts and local trivializing mappings. Choose any admissible chart (U, x) of M. Let

$$\mathcal{F}U = \{(m, \{e_i\}) | m \in U\}$$

and let $\mathcal{F}x: \mathcal{F}U \to x(U) \times Gl(\mathbf{R}^n)$ be defined by

$$(\mathcal{F}x)(m, \{e_i\}) = (x(m), (d_m x^j(e_i))).$$

Thus, $(\mathcal{F}x)(m, \{e_i\}) = (x(m), A)$ where A is the $n \times n$ matrix defined by

$$A_i^j = d_m x^j(e_i).$$

A is invertible since both $\{e_i\}$ and $\{\frac{\partial}{\partial x^j}\Big|_m\}$ are bases of T_mM and

$$e_i = A_i^j \left(rac{\partial}{\partial x^j}igg|_m
ight).$$

Moreover, $\mathcal{F}x$ maps $\mathcal{F}U$ onto all of $x(U) \times Gl(\mathbf{R}^n)$. We leave it as an exercise to show that if \mathcal{A}_M is an admissible atlas of M then

$$\mathcal{A} = \{ (\mathcal{F}U, \mathcal{F}x) | (U, x) \in \mathcal{A} \}$$

is an atlas of $\mathcal{F}M$. Moreover, $Gl(\mathbf{R}^n)$ is an open subset of $gl(\mathbf{R}^n)$, which may be identified with \mathbf{R}^{n^2} . Finally $\psi_U : \pi^{-1}(U) \to U \times Gl(\mathbf{R}^n)$ is a local trivializing mapping if we define it by

$$\psi_U = (x^{-1} \circ \mathrm{id}_{Gl(\mathbf{R}^n)}) \circ \mathcal{F} x.$$

5. Let M be a manifold and g a metric on M. Then g is a type $\binom{0}{2}$ tensor field on M which is symmetric and nondegenerate and which has constant index k = n - p. For each $m \in M$, g_m is a metric on T_mM and thus there is a g-orthonormal basis $\{e_i\}$ of T_mM such that $\{j|g_m(e_j,e_j)=-1\}$ has k elements in it. By reordering this basis if necessary we obtain

$$g_m(e_i, e_j) = G_{ij},$$

where

$$G_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j, 1 \le i \le p \\ -1 & i = j, p + 1 \le i \le n. \end{cases}$$

Define $\mathcal{O}_g M = \{(m, \{e_i\}) \in \mathcal{F}M | g_m(e_i, e_j) = G_{ij}\}$. We claim $\mathcal{O}_g M \xrightarrow{\pi} M, \pi(m, \{e_i\}) = m$, is a fiber bundle. This is not difficult to prove, given the following Theorem.

Theorem 1.1 If M is a manifold and g is a metric on M with index k = n - p, then for each $m_0 \in M$ there exist an open set U about m_0 and vector fields $\{\mathfrak{X}_i\}$ on U such that

$$g_m(\mathfrak{X}_i(m),\mathfrak{X}_i(m)) = G_{ij}$$

for all $m \in U$.

We first show how to use the theorem to prove that $\mathcal{O}_q M \xrightarrow{\pi} M$ is a fiber bundle, after which we will prove the Theorem.

Let $\mathcal{O}(p,k) = \left\{ A \in Gl(\mathbf{R}^n) | A^TGA = G \right\}$. We leave it as an exercise to be proven later that $\mathcal{O}(p,k)$ is a manifold. We show that $\pi:\mathcal{O}_gM\to M$ is locally trivial with fiber $\mathcal{O}(p,k)$. By the Theorem there is an open cover \mathcal{U} of M such that for each $U \in \mathcal{U}$ there exist vector fields $\{x_i\}_{i=1}^n$ defined on U such that

$$g_m(\mathfrak{X}_i(m),\mathfrak{X}_j(m))=G_{ij}$$

for all $m \in U$. Define a mapping

$$\psi_U:\pi^{-1}(U)\to U\times\mathcal{O}(p,k)$$

by

$$\psi_U(m,\{e_i\}) = (m,(\Xi^j(m)(e_i)))$$

where Ξ^{j} is the differential form defined on U by

$$\Xi^j(m)(\mathfrak{X}_i(m))=\delta_i^j.$$

To show that the matrix λ whose components are do that the matrix λ

$$\lambda_i^j = \Xi^j(m)(e_i)$$

is actually in $\mathcal{O}(p,k)$, observe that $e_i = \lambda_i^k \mathfrak{X}_k(m)$ and

$$G_{ij} = g_m(e_i, e_j) = \lambda_i^k \lambda_j^l g_m(\mathfrak{X}_k(m), \mathfrak{X}_l(m))$$

and
$$G_j^i = \sum_{k,l} (\lambda_i^k \lambda_j^l) G_l^k = (\lambda^T G \lambda)_j^i.$$

So $G = \lambda^T G \lambda$ and $\lambda \in \mathcal{O}(p, k)$ as required. It follows that ψ_U maps $\pi^{-1}(U)$ into $U \times \mathcal{O}(p, k)$. Moreover, ψ_U has an inverse and in fact

$$\psi_U^{-1}(m,(\lambda_i^j)) = (m,\lambda_i^j \mathfrak{X}_j(m)).$$

The mappings $\{\psi_U\}_{U\in\mathcal{U}}$ have the formal requirements of local trivializing mappings but they must also be smooth. So one needs a manifold structure on $\mathcal{O}_g M$ such that the maps $\{\psi_U\}$ are diffeomorphisms. One defines such a structure on $\mathcal{O}_g M$ as follows.

First observe that it is no loss of generality to assume that for each $U \in \mathcal{U}$, U is a subset of the domain of some chart of M. Let $\mathcal{A}(p,k)$ denote an atlas of admissible charts of $\mathcal{O}(p,k)$. For each $U \in \mathcal{U}$ and each chart $y \in \mathcal{A}(p,k)$ let x denote an admissible chart of M defined on U and let $U(y) = \psi_U^{-1}(U \times V_y)$ where $V_y \subseteq \mathcal{O}(p,k)$ is the domain of y. Finally define a chart $\eta_y : U(y) \to x(U) \times y(V_y)$ by

$$\eta_y = (x \times y) \circ \psi_U.$$

It is easy to show that $\mathcal{A} = \{(U(y), \eta_y) | U \in \mathcal{A}_M, y \in \mathcal{A}(p, k)\}$ is an atlas on $\mathcal{O}_g(M)$ and this defines a differentiable structure on $\mathcal{O}_g(M)$. Moreover, relative to this structure the mappings $\{\psi_U\}_{U \in \mathcal{U}}$ are all smooth. Indeed, if one chooses a point of $\pi^{-1}(U)$ for some $U \in \mathcal{U}$, then that point is in $U(y) = \psi_U^{-1}(U \times V_y)$ for some V_y , and one can show that ψ_U restricted to U(y) is smooth by considering its local representatives. We see from the commutative diagram

$$\begin{array}{ccc} U_y & \xrightarrow{\psi_U} & U \times V_y \\ \uparrow_{\eta_y} \downarrow & \downarrow_{x \times y} \\ x(U) \times y(V_y) & \xrightarrow{\mathrm{identity}} & x(U) \times y(V_y) \end{array}$$

that the identity mapping is the local representative of ψ_U relative to the charts η_y and $x \times y$ and so ψ_U is indeed smooth.

To complete the proof one needs to prove Theorem 2.1 above.

Proof of Theorem 2.1. The proof requires a number of steps. Throughout the proof let $m_0 \in M$ and let (W, \bar{x}) denote an admissible chart of M such that $m_0 \in W$.

Step I: The chart \bar{x} may be modified to obtain a new admissible chart x defined on an open subset of W such that

$$g_{m_0}\left(\left.\frac{\partial}{\partial x^i}\right|_{m_0},\left.\frac{\partial}{\partial x^j}\right|_{m_0}\right)=G_{ij}.$$

To see this, first choose any frame $\{e_i\}$ at m_0 such that $g_{m_0}(e_i, e_j) = G_{ij}$. Let A be any matrix such that $\frac{\partial}{\partial \bar{x}^k}\Big|_{m_0} = A_k^i e_i$. Define $x^i = A_k^i \bar{x}^k$ on all of W; then

$$\left. \frac{\partial}{\partial x^i} \right|_{m_0} = \frac{\partial \bar{x}^k}{\partial x^i} \left(\frac{\partial}{\partial \bar{x}^k} \right|_{m_0} \right) = A_i^{-1k} \left(\frac{\partial}{\partial \bar{x}^k} \right|_{m_0} = e_i$$

and consequently

$$g_{m_0}\left(\frac{\partial}{\partial x^i}\bigg|_{m_0}, \frac{\partial}{\partial x^j}\bigg|_{m_0}\right) = G_{ij}.$$

This proves Step I.

Notice that a consequence of Step I is that

$$g_{m_0}\left(\left.\frac{\partial}{\partial x^i}\right|_{m_0},\left.\frac{\partial}{\partial x^j}\right|_{m_0}\right) = \delta_{ij}$$

for $1 \leq i, j \leq p$. We eventually show that this holds for all m in some open set about m_0 and we characterize a maximal subset on which g_m is positive definite.

Step II: Let $T_m^+M = \left\{\sum_{i=1}^p \lambda^i \left(\frac{\partial}{\partial x^i}\Big|_m\right) | \lambda^i \in \mathbf{R}\right\}$ for each $m \in W$. We show that there is an open subset $\mathcal{O}_{m_0} \subseteq W$ containing m_0 such that for each $m \in \mathcal{O}_{m_0}$, g_m restricted to T_m^+M is positive definite. Proof of Step II. Let S denote the unit sphere in \mathbf{R}^p . Thus $\vec{\lambda} \in S$ iff $\sum_{i=1}^p (\lambda^i)^2 = 1$. Define a function $H: S \times W \to \mathbf{R}$ by

$$H(\vec{\lambda}, m) = g_m \left(\sum_{i=1}^p \lambda^i \left(\frac{\partial}{\partial x^i} \Big|_m \right), \sum_{j=1}^p \lambda^j \left(\frac{\partial}{\partial x^j} \Big|_m \right) \right).$$

The mapping H is continuous, and

$$H(\vec{\lambda}, m_0) = g_m \left(\sum_{i=1}^p \lambda^i \left(\frac{\partial}{\partial x^i} \Big|_{m_0} \right), \sum_{j=1}^p \lambda^j \left(\frac{\partial}{\partial x^j} \Big|_{m_0} \right) \right)$$

$$= \sum_{i=1}^p \sum_{j=1}^p \lambda^i \lambda^j \delta_{ij}$$

$$= \sum_{k=1}^p (\lambda^k)^2 = 1.$$

For each $\vec{\lambda} \in S$, let $U_{\vec{\lambda}}$ be open about $\vec{\lambda}$ in S and $\mathcal{O}_{\vec{\lambda}}$ open about m_0 in M such that H is positive on $U_{\vec{\lambda}} \times \mathcal{O}_{\vec{\lambda}}$. There exists a finite number of the sets $U_{\vec{\lambda}}$ which covers $S, U_{\vec{\lambda_1}}, \ldots, U_{\vec{\lambda_N}}$. Let

$$U_{\alpha} = U_{\vec{\lambda_{\alpha}}}$$
 and $\mathcal{O}_{\alpha} = \mathcal{O}_{\vec{\lambda_{\alpha}}}$.

Let
$$\mathcal{O}_{m_0} = \bigcap_{\alpha=1}^N \mathcal{O}_{\alpha}$$
. For $(\vec{\lambda}, m) \in S \times \mathcal{O}_{m_0}$ we see that $\vec{\lambda} \in U_{\alpha_0}$

for some α_0 and, since $m \in \mathcal{O}_{\alpha}$ for all α , we see that $(\vec{\lambda}, m) \in U_{\alpha_0} \times \mathcal{O}_{\alpha_0}$ and thus $H(\vec{\lambda}, m) > 0$. So H is positive on $S \times \mathcal{O}_{m_0}$. We claim g_m is positive definite on T_m^+M for all $m \in \mathcal{O}_{m_0}$. To see this, let $m \in \mathcal{O}_{m_0}$ and $V \in T_{m_0}^+M$ such that $v \neq 0$. Then

$$v = \sum_{i=1}^{p} \lambda^{i} \left(\frac{\partial}{\partial x^{i}} \Big|_{m_{0}} \right)$$
 and $\sum_{i=1}^{p} (\lambda^{i})^{2} \neq 0$. Let

$$\|\vec{\lambda}\| = \left[\sum_{i=1}^p (\lambda^i)^2\right]^{1/2}$$

and observe that

$$\frac{1}{\|\vec{\lambda}\|}v = \sum_{i=1}^{p} \left(\frac{\lambda^{i}}{\|\vec{\lambda}\|}\right) \left(\frac{\partial}{\partial x^{i}}\Big|_{m}\right),$$

where

$$\sum_{i=1}^{p} \left(\frac{\lambda^{i}}{\|\vec{\lambda}\|} \right)^{2} = \sum_{i=1}^{p} \left[\frac{(\lambda^{i})^{2}}{\sum_{j=1}^{p} (\lambda^{j})^{2}} \right] = 1.$$

Thus $g_m(\frac{1}{\|\vec{\lambda}\|}v, \frac{1}{\|\vec{\lambda}\|}v) = \frac{1}{\|\vec{\lambda}\|^2}g_m(v, v)$ and $\frac{1}{\|\vec{\lambda}\|^2}g_m(v, v) = H(\frac{\vec{\lambda}}{\|\vec{\lambda}\|}, m) > 0$. Thus $g_m(v, v) > 0$ as required. So g_m is positive definite on T_m^+M for all $m \in \mathcal{O}_{m_0}$ and Step II follows.

Notice that for each $m \in \mathcal{O}_{m_0}$, $\left\{ \frac{\partial}{\partial x^i} \Big|_m \right\}$ is a basis of $T_m^+ M$. We may apply Gram-Schmit orthogonalization to this basis to obtain a $g_m \left| (T_m^+ M \times T_m^+ M) \right|$ orthogonal basis of $T_m^+ M$. Let $\{\xi_i(m)\}$ denote this basis. An examination of the orthogonalization process shows that the resulting vector fields $\{\xi_i\}$ on \mathcal{O}_{m_0} are in fact smooth and so one has vector fields $\{\xi_i\}_{i=1}^p$ on \mathcal{O}_{m_0} such that

$$g_m\left(\xi_i(m),\xi_j(m)\right)=\delta_{ij}$$

for all $m \in \mathcal{O}_{m_0}$, $1 \leq i, j \leq p$.

Step III: Let T_m^-M denote the g_m orthogonal complement of T_m^+M in T_mM for each $m \in \mathcal{O}_{m_0}$. We claim that $T_mM = T_m^+M \oplus T_m^-M$ for all $m \in \mathcal{O}_{m_0}$ and that the restriction of g_m to T_m^-M is negative definite.

Proof. Let $v \in T_m M$, $m \in \mathcal{O}_{m_0}$. We show that $v = v^+ + v^-$ for some $v^+ \in T_m^+ M$, $v^- \in T_m^- M$. Define v^+ by

$$v^{+} = \sum_{j=1}^{p} g_{m}(v, \xi_{j}(m))\xi_{j}(m).$$

Note that

$$g_m(v - v^+, \xi_i(m)) = g_m(v, \xi_i(m)) - \sum_{j=1}^p g_m(v, \xi_j(m)) g_m(\xi_j(m), \xi_i(m))$$
$$= g_m(v, \xi_i(m)) - \sum_{j=1}^p g_m(v, \xi_j(m)) \delta_{ji} = 0.$$

Since this holds for all $\xi_i(m)$ and since $\{\xi_i(m)\}$ is a basis of T_m^+M we see that $v-v^+$ is in the g_m -orthogonal complement of T_m^+M in T_mM and thus $v-v^+\in T_m^-M$. If we let $v^-=v-v^+$ we have $v=v^++v^-$ as we require. To see that the sum is a direct sum note that if $v\in T_m^+M\cap T_m^-M$ then $v\in T_m^+M$ is such that $g_m(v,v)=0$ and since g_m is positive definite on T_m^+M , v=0. Thus $T_mM=T_m^+M\oplus T_m^-M$.

We now show that g_m restricted to T_m^-M is negative definite. Assume this is not so; then an orthonormal basis $\{f_j\}_{j=p+1}^n$ of T_m^-M

exists for which there is at least one $p+1 \leq j \leq n$ such that $g_m(f_j, f_j) = 1$. It follows that

$$\xi_1(m), \xi_2(m), \dots, \xi_p(m), f_{p+1}, f_{p+2}, \dots, f_m$$

is a g_m -orthonormal basis of T_mM such that $g_m(\xi_i(m), \xi_i(m)) = 1$, $1 \le i \le p$, and $g_m(f_j, f_j) = 1$. This implies that the index of g_m is less than n - p, contrary to hypothesis. It follows that g_m restricted to T_m^-M is negative definite.

Proof of the Theorem itself. Let $\rho_m: T_mM \to T_m^-M$ denote the orthogonal projection of T_mM onto T_m^-M . Recall this may be defined by $\rho_m(v) = v^-$ where $v = v^+ + v^-$ is the decomposition in Step III. Let $w \in T_mM$ and write $w = w^+ + w^-$. Since

$$w^- \in T_m M, \ w^- = \sum_{i=1}^n \mu_i \left(\frac{\partial}{\partial x^i} \Big|_m \right) \text{ and }$$

$$\rho_{m}(w^{-}) = \sum_{i=1}^{n} \mu_{i} \rho_{m} \left(\frac{\partial}{\partial x^{i}} \Big|_{m} \right) \\
= \sum_{i=1}^{p} \mu_{i} \rho_{m} \left(\frac{\partial}{\partial x^{i}} \Big|_{m} \right) + \sum_{i=p+1}^{n} \mu_{i} \rho_{m} \left(\frac{\partial}{\partial x^{i}} \Big|_{m} \right) \\
= \sum_{i=p+1}^{n} \mu_{i} \rho_{m} \left(\frac{\partial}{\partial x^{i}} \Big|_{m} \right).$$

So
$$w^- = \rho_m(w^-) = \sum_{i=p+1}^n \mu_i \rho_m \left(\frac{\partial}{\partial x^i} \Big|_m \right)$$
. The metric $-g_m$ is pos-

itive definite on $T_m^- M$ and so we can apply Gram-Schmit orthogonalization to the vector fields

$$m \mapsto \rho_m \left(\frac{\partial}{\partial x^i} \bigg|_m \right) , \ p+1 \le i \le n$$

on \mathcal{O}_{m_0} . We obtain vector fields ξ_{p+1}, \ldots, ξ_n on \mathcal{O}_{m_0} such that

$$(-g_m)(\xi_i(m),\xi_j(m)) = \delta_{ij} , p+1 \le i, j \le n$$

for all $m \in \mathcal{O}_{m_0}$. Thus we have vector fields $\xi_1, \xi_2, \ldots, \xi_n$ on \mathcal{O}_{m_0} such that

$$g_m\left(\xi_i(m),\xi_j(m)\right) = G_{ij}$$

for all $m \in \mathcal{O}_{m_0}$.

Definition 1.5 A fiber bundle $\pi: E \to M$ is called a vector bundle iff

- 1. the fiber of the bundle is a vector space V,
- 2. there is a family of local trivializing mappings $\psi_U : \pi^{-1}(U) \to U \times V$, $U \in \mathcal{U}$ such that if $U_1, U_2 \in \mathcal{U}$ and $U_1 \cap U_2 \neq \emptyset$, then for each $m \in U_1 \cap U_2$ the mapping from V to V defined by

$$x \mapsto \pi_V \left(\psi_{U_2} \left(\psi_{U_1}^{-1}(m, x) \right) \right)$$

is a vector space isomorphism.

Observe that in this case there exist well-defined continuous operations + and \cdot on each fiber $\pi^{-1}(m)$, $m \in M$. These operations are defined by

$$v + w = \psi_U^{-1}(m, \pi_V(\psi_U(v)) + \pi_V(\psi_U(w)))$$

$$cv = \psi_U^{-1}(m, c \cdot \pi_V(\psi_U(v))).$$

Exercise 1.2 Show that TM, T^*M, Λ^kM are vector bundles.

Definition 1.6 Two vector bundles (E_1, M_1, π_1) and (E_2, M_2, π_2) are vector bundle isomorphic iff there exists a fiber bundle isomorphism (Φ, ϕ) from π_1 to π_2 such that for each $m \in M$ the restriction of Φ to $\pi_1^{-1}(m)$ is a vector space isomorphism from $\pi_1^{-1}(m)$ onto $\pi_2^{-1}(\phi(m))$.

Examples

- 1. Let $\mathcal N$ denote Newtonian space, i.e. $\mathcal N$ is a manifold with an atlas $\mathcal A$ such that
 - (a) if $x,y\in\mathcal{A}$ then $y\circ x^{-1}$ is a rigid motion of \mathbf{R}^3
 - (b) if $x \in \mathcal{A}$ and ϕ is a rigid motion of \mathbb{R}^3 then $\phi \circ x \in \mathcal{A}$.

Let $\mathcal{SN} = \mathbf{R} \times \mathcal{N}$ denote the bundle space of the trivial bundle $\pi_T : \mathcal{SN} \to \mathbf{R}, \pi_T(t,x) = t$. Observe that trajectories of objects in Newtonian space are described by local sections of this bundle: $\hat{\gamma}(t) = (t, \gamma(t))$ where $\gamma(t) \in$ is the position of the object at time t. The velocity of the object is $\frac{d}{dt}\pi_{\mathcal{A}}(\hat{\gamma}(t)) = \frac{d}{dt}(\gamma(t))$. We thus see that Newtonian spacetime is a fiber bundle over time-axis but Minkowski spacetime is not.

- 2. Let Q be the configuration space of a system of particles. The <u>time evolution</u> of the system is a section of the trivial bundle $\mathbf{R} \times TQ \to \mathbf{R}$.
- 3. Let M denote Minkowski spacetime. The electromagnetic field tensor is a section of the bundle $\Lambda^2 M \to M$, a trivial fiber bundle which is not obviously trivial. Similarly vector potentials are sections of the bundle $\Lambda^1 M \to M$.
- 4. Let M denote Minkowski space and $\psi: M \to \mathbf{C}^2$ a spin field. Note that this defines a section $\hat{\psi}(x) = (x, \psi(x))$ of the trivial bundle $M \times \mathbf{C}^2 \to M$.

These examples show that most dynamical fields in physics may be viewed as (local) sections of some fiber bundle.

It is our intent to formulate a theory in which all Lagrangians have domain an appropriate fiber bundle.

Definition 1.7 If $\pi: E \to M$ is a fiber bundle with fiber F and (U, \bar{y}) is an admissible chart of E then we say that this chart is adapted to the bundle π iff $\pi(U)$ is open in M and there is a chart \bar{x} of M defined on $\pi(U)$ such that $\bar{y}^{\mu} = \bar{x}^{\mu} \circ \pi$ for $1 \leq \mu \leq n$, $n = \dim M$. In this case we often write $x^{\mu} = \bar{x}^{\mu} \circ \pi$, $1 \leq \mu \leq n$, and $y^{a} = \bar{y}^{a+n}$ for $1 \leq a \leq N$ where $N = \dim F$.

Exercise 1.3 If $\pi: E \to M$ is a fiber bundle and $y \in E$ then there is an adapted coordinate system at y.

Note that if $u \in E$ and $w \in T_uE$ such that $d_u\pi(w) = 0$ then

$$w = \sum_{a=1}^{N} w^{a} \left(\frac{\partial}{\partial y^{a}} \Big|_{w} \right).$$

Indeed, in general, $w = \sum_{\mu=1}^{n} w^{\mu} \left(\frac{\partial}{\partial x^{\mu}} \Big|_{w} \right) + \sum_{a=1}^{N} w^{a} \left(\frac{\partial}{\partial y^{a}} \Big|_{w} \right)$. But $d_{u}x^{\mu}(w) = d\bar{x}^{\mu} \left(d_{u}\pi(w) \right) = 0$ and also

$$d_{u}x^{\mu}(w) = dx^{\mu} \left(\sum_{\nu} w^{\nu} \left(\frac{\partial}{\partial x^{\nu}} \bigg|_{w} \right) + \sum_{a} w^{a} \left(\frac{\partial}{\partial y^{a}} \bigg|_{w} \right) \right) = w^{\mu}.$$

Thus $w^{\mu} = 0$ for $1 \leq \mu \leq n$ and

$$w = \sum_{a=1}^{N} w^a \left(\left. \frac{\partial}{\partial y^a} \right|_w \right)$$

as asserted.

Definition 1.8 If $\pi: E \to M$ is a fiber bundle then a tangent vector $w \in T_uE$ at $u \in E$ is vertical iff $d_u\pi(w) = 0$. A curve $\gamma: I \to E$ in E is vertical iff $\gamma'(t) \in T_{\gamma(t)}E$ is vertical for all $t \in I$.

Exercise 1.4 Show that a curve $\gamma:I\to E$ is vertical iff the image of γ lies in a single fiber of E.

Definition 1.9 If $\pi: E \to M$ is a fiber bundle and $y_0 \in E$ then $J_{y_0}E$ denotes the set of all linear mappings $\gamma: T_{\pi(y_0)}M \to T_{y_0}E$ such that

$$d_{y_0}\pi\circ\gamma=\mathrm{id}_{T_{\pi(y_0)}M}.$$

If $JE = \{(y,\gamma) | y \in E \text{ and } \gamma \in J_y E\}$ then we will show that the mapping $\pi_E : JE \to E$ defined by $\pi_E(y,\gamma) = y$ defines a fiber bundle structure. This fiber bundle is called the first order jet bundle of the fiber bundle $\pi : E \to M$.

Theorem 1.2 If $\pi: E \to M$ is a fiber bundle and $\gamma \in J_yE$, then $T_yE = \operatorname{Im} \gamma \oplus \operatorname{Ker} d_y\pi$. Moreover there is a local section $s: U \to E$ of π such that s(x) = y and $\gamma = d_xs$ where $x = \pi(y)$.

Proof. First we show that $T_yE=\operatorname{Im} \gamma \oplus \operatorname{Ker} d_y\pi$. Let $w\in T_yE$ and notice that

$$d_y \pi \left(w - \gamma \left(d_y \pi(w) \right) \right) = d_y \pi(w) - d_y \pi \left(\gamma \left(d_y \pi(w) \right) \right)$$
$$= d_y \pi(w) - d_y \pi(w) = 0.$$

So $w - \gamma(d_y\pi(w)) \in \operatorname{Ker} d_y\pi$ and if we let $k = w - \gamma(d_y\pi(w))$ then $w = \gamma(d_y\pi(w)) + k \in \operatorname{Im} \gamma + \operatorname{Ker} d_y\pi$. Also observe that if $w \in \operatorname{Im} \gamma \cap \operatorname{Ker} d_y\pi$ then $w = \gamma(v)$ for some $v \in T_{\pi(y)}M$ and $d_y\pi(w) = 0$. Thus $v = d_y\pi(\gamma(v)) = d_y\pi(w) = 0$ and $w = \gamma(v) = 0$. So $w \in \operatorname{Im} \gamma \cap \operatorname{Ker} d_y\pi = 0$ and $T_yE = \operatorname{Im} \gamma \oplus \operatorname{Ker} d_y\pi$.

To prove the second part of the theorem, let $(\tilde{U}, x^{\mu}, y^{a})$ denote an admissible chart of E which is adapted to the fiber bundle structure $\pi: E \to M$. If (\bar{x}^{μ}) is a chart of M on $\pi(\tilde{U})$ such that $x^{\mu} = \bar{x}^{\mu} \circ \pi$ then γ has the property that

$$\gamma \left(\left. \frac{\partial}{\partial \bar{x}^{\mu}} \right|_{x} \right) = \left(\left. \frac{\partial}{\partial x^{\mu}} \right|_{y} \right) + \gamma_{\mu}^{a} \left(\left. \frac{\partial}{\partial y^{a}} \right|_{y} \right) \tag{1.1}$$

for some set of numbers $\gamma_{\mu}^a \in \mathbb{R}$. This follows if the fact that γ maps T_xM to T_yE and thus

$$\gamma \left(\left. \frac{\partial}{\partial \overline{x}^{\mu}} \right|_{x} \right) = a^{\nu}_{\mu} \left(\left. \frac{\partial}{\partial x^{\nu}} \right|_{y} \right) + \gamma^{a}_{\mu} \left(\left. \frac{\partial}{\partial y^{a}} \right|_{y} \right).$$

On the other hand the fact that $d_y\pi\left(\gamma_x\left(\frac{\partial}{\partial\bar{x}^\mu}\Big|_x\right)\right)=\frac{\partial}{\partial\bar{x}^\mu}\Big|_x$ implies that $a_\mu^\nu=\delta_\mu^\nu$ and (??) holds. To show that there exists a mapping s satisfying the conclusion of the theorem we prescribe the components of s in the chart (x^μ,y^a) and thus prescribe s itself. We want s(x)=y so we must require that $x^\mu(s(x))=x^\mu(y)$ and $y^a(s(x))=y^a(y)$ for all $1\leq\mu\leq n, 1\leq a\leq N$. Moreover we require that $d_xs=\gamma$ and since for every local section s

$$d_{u}s\left(\frac{\partial}{\partial \bar{x}^{\nu}}\Big|_{u}\right) = \partial_{\nu}\left(x^{\mu} \circ s \circ \bar{x}^{-1}\right)\left(\frac{\partial}{\partial x^{\mu}}\Big|_{u}\right) + \partial_{\nu}\left(y^{a} \circ s \circ \bar{x}^{-1}\right)\left(\frac{\partial}{\partial y^{a}}\Big|_{u}\right)$$
$$= \left(\frac{\partial}{\partial x^{\nu}}\Big|_{u}\right) + \frac{\partial(y^{a} \circ s)}{\partial \bar{x}^{\nu}}\left(\frac{\partial}{\partial y^{a}}\Big|_{u}\right)$$

we must have

$$\gamma_{\nu}^{a} = \frac{\partial (y^{a} \circ s)}{\partial \bar{x}^{\nu}}(x).$$

So, essentially we must prescribe the terms of the "first order Taylor polynomial" of s in order to obtain the desired properties: s(x) = y, $d_x s = \gamma$. Thus we want s to satisfy the conditions:

$$\begin{cases} x^{\mu}(s(u)) &= \bar{x}^{\mu} (\pi(s(u))) = \bar{x}^{\mu}(u) \\ y^{a}(s(u)) &= y^{a}(y) + \gamma_{\nu}^{a} (\bar{x}^{\nu}(u) - \bar{x}^{\nu}(x)) . \end{cases}$$
(1.2)

When these conditions hold we see that

$$x^{\mu}(s(x)) = \bar{x}^{\mu}(x) = \bar{x}^{\mu}(\pi(y)) = x^{\mu}(y),$$

 $y^{a}(s(x)) = y^{a}(y)$

and so s(x) = y. Moreover

$$\frac{\partial(y^a \circ s)}{\partial \bar{x}^{\mu}} = \partial_{\mu} \left(y^a \circ s \circ \bar{x}^{-1} \right)
= \partial_{\mu} \left\{ y^a(y) + \gamma^a_{\nu} \left((\bar{x}^{\nu} \circ \bar{x}^{-1}) - (\bar{x}^{\nu} \circ \bar{x}^{-1}) (\bar{x}(x)) \right) \right\}
= \gamma^a_{\nu} \delta^{\nu}_{\mu} = \gamma^a_{\mu}.$$

It follows that

$$\frac{\partial (y^a \circ s)}{\partial \bar{x}^{\mu}}(u) = \gamma^a_{\mu}$$

for all u and thus for u=x. Finally observe that the equations (??) may indeed be imposed on s on some open subset U about x lying in the image of $\pi(\tilde{U})$ since they hold at u=x itself. The theorem follows.

Definition 1.10 If $\pi: E \to M$ is a fiber bundle and $x_0 \in M$ then two local sections s_1 and s_2 of π , each defined on an open subset of M containing x_0 , are said to be 1-jet equivalent iff $s_1(x_0) = s_2(x_0)$ and $d_{x_0}s_1 = d_{x_0}s_2$. Thus s_1 and s_2 must define the same point $y_0 = s_1(x_0) = s_2(x_0)$ of E and the same element $d_{x_0}s_1 = d_{x_0}s_2 \in J_{y_0}E$. Observe that for fixed $x_0 \in M$ the notion of 1-jet equivalence defines an equivalence relation on the set of all local sections of π defined at x_0 . Given such a local section s denote the equivalence class determined by s by $(js)(x_0)$. Observe that one obtains a mapping js from the domain of s into JE and moreover that $(js)(x) = (s(x), d_x s)$ for each $x \in \text{dom } s$. We show that the mappings $\pi_E: JE \to E$ and $\pi_M: JE \to M$ defined by $\pi_E(y,\gamma) = y$, $\pi_M(y,\gamma) = \pi(y)$ are fiber bundles and that js is a local section of π_M for each local section s of $\pi: E \to M$.