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6. INTEGRAL CALCULUS 
 
In the differential calculus we began by studying how to use limits to define the 

tangent line to a graph. We then defined the derivative, saw how to calculate the 

derivatives of basic elementary functions, then their sums, products, quotients and 

composites. After that we saw how logarithmic differentiation allowed us to 

compute the derivatives of inverse functions. Having established the calculational 

foundation we proceeded to study how to apply derivatives to a number of 

interesting applications. Mainly we have seen that the derivative describes how a 

function changes with respect to its input variable. This in turn gave us much 

geometric information about the graph, particularly increase/decrease and 

concavity. 

 

We now change gears a bit, a different question motivates integral calculus. How can 

we calculate the area of a curvy shape? This question is ancient. The Greeks and 

Chinese thought of dividing a given curvy region into smaller shapes which have a 

well-known area. The area of a rectangle is length times width, this defines area. 

Then for a shape more complicated than a rectangle we can imagine filling it with 

lots of little rectangles and then the area of the shape would be the sum of the areas 

of the rectangles. This method required a large investment of arithmetic. The 

definition of area has not changed, in fact intuitively we still agree with the ancients. 

What is new is what Isaac Barrow discovered and Newton, Leibniz and countless 

others developed. They learned that the derivative contains information about the 

area in a somewhat indirect manner. The integral and derivative are said to be 

“inverse processes”. This idea is made precise in the Fundamental Theorem of 

Calculus (FTC). The FTC will allow us to find the so-called “signed-area” under a 

curve. The full resolution of the area problem will have to wait until the next 

chapter. 

 

Integral calculus need not much harder than differential calculus. However, you will 

find it is nearly impossible unless you already have a firm grasp on the differential 

calculus. If you have uncertainty on doing the basic derivatives I suggest you remedy 

that before getting too far into this chapter. When I say it is not much harder that is 

directed to the student, I am careful to choose those problems which have simple 

solutions. In contrast to differential calculus we will see that it is very easy to come 

up with functions which have integrals such that formula in terms of elementary 

functions exists. 

 

The example that follows next is rather unusual, I just want to illustrate how you can 

find areas even without the FTC. There is something subtle here, we have never 

proved that 3.1415… really is the ratio of the circumference and the diameter. There 

are proofs of , but I don’t think its in Stewart or my notes at the moment. So when 

we prove that  its not a complete proof, we ignore the question of 

motivating the value for  itself.  
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6.1. AREA UNDER A CURVE 
 

We can approximate the area under the curve  by dividing the shape up into 

a bunch of rectangles. The more rectangles we use the better the approximation of 

the area. For example, here is an illustration of the approximation of the area under 

 for  where the left endpoint of the rectangle is used to set the 

height of the approximating rectangle. 

 
We use boxes or equal length. To find that length we take the total length  and 

divide by the number of approximating rectangle .  There will be -subintervals.  

 

The illustration used left-endpoints to determine the height of the rectangles but 

there are four other choices that we need to mention here: 

 

I. Left endpoint rule  

II. Right endpoint rule  

III. Mid-point rule  

IV. Riemann sum, uses arbitrary point as sample point  

 

We will give formulas for the first three cases. The fourth case we will use to define 

the definite integral, the freedom to choose any point in each subinterval is 

important to our proof of the FTC. It can be shown that as  these various 

approximation schemes will converge to a single value, the area under the curve 

 from  to . This “area” can be negative if  for some 

. So we will refer to what we are calculating as the “signed-area”. 
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I’ll let you calculate a couple of these in the homework. The midpoint gives the best 

estimate in many cases, but the precise estimation of error is too involved for this 

course. I encourage you to take numerical methods if that sort of question is 

intriguing. 
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We can calculate these sums for any function which is continuous. In fact, we could 

even calculate these for a function which was discontinuous at a finite number of 

points. If you think about it we can just add together the area under each piece of a 

piecewise-defined function. 
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Notice that this definition allows us to use the left, right or mid-point rules if we are 

asked to “calculate the integral from the definition”. This is still a daunting task for 

even simple functions.  
 

Example 6.1.1: ( not an efficient method to calculate area!) 
 

 
 

Notice that the width of the rectangle  goes to zero as the number of 

approximating rectangles goes to infinity. Intuitively,  and . The 

Definition6.1.1: (Definite Integral; Riemann Integral) 

Let a function  be continuous at all but a finite number of points on 

the interval  then we define the definite integral of  from  to  as 

follows:  

  

 

The sample point , but we make no particular restriction 

on the choice, we can use any point in the subinterval provided it has  

 (avoid discontinuities). The function  is called the 

integrand and the value  is the lower bound or limit of integration 

while  is the upper bound or limit of integration. We call  the 

measure of integration.  
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integral is an infinite sum, Leibniz used  to enforce the notion that the integral is a 

summation. Technically,  is not a number while  is a number, it is finite while 

 is known as an infinitesimal. We will find that infinitesimal arguments provide an 

essential tool in the application of integration to real-world problems. I’m getting a 

little ahead in the story, let’s get back to the basics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I should mention that the family of functions  is the most general 

antiderivative. We may carelessly refer to  as a function, but strictly 

speaking this is incorrect,  is actually a whole family of functions. 

For example, if  then  while we could say  is 

a particular antiderivative. Since the whole family of functions have equal 

derivatives it follows that they differ by at most a constant by Theorem 5.3.6. 

 

At this stage you would rightly chastise me for calling this an “integral” after 

all what does this indefinite integral have to do with area? Let’s focus on a 

really easy example. Let  let’s consider the area under the curve 

on . An antiderivative for  is . Look at the graphs, 

 
 

You can see that the change in the antiderivative over the interval gave us 

the area under the curve in this case. 

Definition6.1.2: (Indefinite Integral; antiderivatives) 

Let a function  be continuous at all but a finite number of points on 

some subset  then we define the indefinite integral of  on  as:  
 

 

 

where  is a family of functions which includes every function  

such that  on . We say that  is an antiderivative of  if 

. The function  is called the integrand and the integral is 

called indefinite because it is not definite, it has no upper and lower 

limits. We also call  the measure of integration in this context.  
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Can we generalize this example? What if anything can we say in general 

about areas and tangent lines? In particular we should think about the 

tangent line to the graph of the antiderivative. What will this tell us about 

the function? Is there some way to pick the height of the approximating 

rectangle that uses the derivative of the antiderivative on the interval? Recall 

the Mean Value Theorem for  on the interval  tells us that 

there exists  such that  

 

  

 

We can choose the sample point to be this point; . Since  is the 

antiderivative of  we find  

 

  

 

Here’s a picture of how the Mean Value Theorem works for . 

 
Remark: I suppose this makes sense to look at the Mean Value Theorem, it 

does give us a link between the derivative and the values of the function. Of 

course the values of the function will go toward what the area is under the 

curve. So, if the function  is the derivative of another function  then it 

stands to reason the derivatives of  should tell us about the area under . 

And more than that, the derivatives of  are related to the values of  and 

hence the area. A more direct argument to try to begin is to use , after all 

the derivative is related to the function through the mean value Theorem. 

However, the way in which they are related is not helpful in calculating the 

definite integral.  

 
Goal: find a nice formula for the definite integral that uses the antiderivative.  
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Proof of the Fundamental Theorem of Calculus: (we use the discussion above 

to motivate our choice of sample points in the Riemann integral) 

 

We will pick the sample points in the Riemann integral below to be those 

points such that the Mean Value Theorem is satisfied for the antiderivative 

on the given subinterval. That is we insist that  such that 

. We are free to choose such points because the 

antiderivative is by definition differentiable and continuous. Thus the Mean 

Value Theorem applies to .  

 

  

 

This concludes the proof of the Fundamental Theorem of Calculus (FTC). 

Lets state the result: 

 

 

 

 

 

 

 

This result clearly extends to piecewise continuous functions. We can apply 

the FTC to each piece and take the sum of those results. This Theorem is 

amazing. We can calculate the area under a curve based on the values of the 

antiderivative at the endpoints. Think about that, if  and  then 

 depends only on  and . Doesn’t it seem intuitively likely 

that what value  takes should matter as well? Why don’t we have to care 

about ? The values of the function at  certainly went into the 

calculation of the area, if we calculate a left sum we would need to take 

values of the function between the endpoints. The cancellation that occurs in 

the proof is the root of why my naïve intuition is bogus. 

 

Theorem 6.1.1: (Fundamental Theorem of Calculus) If  is continuous on  with 

antiderivative  then  
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Remark: the variable inside the integral is known as a “dummy variable of 

integration”. We can write another letter in the place just the same. Overall 

this integral is not a function of , rather it is a number. We can write: 
 

  

In contrast we cannot say the same for the indefinite integral. When we write 

 we have a family of functions of , on the other hand  that 

would a family of functions of . 
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6.2. INDEFINITE INTEGRATION 
 

In this section we discuss all the elementary integrals. We find these by educated 

guessing. We know the derivatives, we just have to go backwards and tweak it a bit 

here or there. 

 

Example 6.2.1: (here we discuss the meaning of “c”) 

 

 
 

Example 6.2.2: 
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Example 6.2.3: 

 

 

 

Summary of all the basic integrals including a few you are not 

expected to memorize in Calculus I: 
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All of the basics summarized: what you need to know: 
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Example 6.2.4, 6.2.5 and 6.2.6: 

 

 

 

Much more can be said about indefinite integration. All we have done so far is to pick the 

easiest of examples. We will learn u-substitution this semester and then a variety of other 

techniques to calculate indefinite integrals next semester. Generally it is a much more 

challenging problem than differentiation. 
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6.3. EXAMPLES OF DEFINITE INTEGRATION 

 

We proved the FTC in the first section of this chapter. I now give a simple, non-rigourous 

proof for the FTC, maybe you will like this one more. 

 

 
Example 6.3.1: (we did this before, contrast with Ex. 6.1.1) 
 

 
 

Example 6.3.2 and 6.3.3: 
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Properties of Definite Integration: 

These can be shown by direct calculations from Definition 6.1.1. 
 

 
 

Example 6.3.5 and 6.3.6: 

 

 
 

 

The problem of finding a good upper ( ) or lower ( ) bound for a given 

function  can be quite challenging. However, if the function is strictly 

increasing or decreasing on the interval  then the values of the function 

endpoints of the function provide convenient bounds. Property 8. is at least 

gives us some estimate of the possible values that  may take, even if 

the antiderivative of  is out of reach. 
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6.4. INTEGRATION AS AN INVERSE PROCESS 

 

Sometimes you’ll hear someone say that differentiation and integration are inverse 

processes. This is true in a certain sense. However, unqualified this is a dangerous 

statement. Differentiation takes a particular function in and then it outputs another 

function. In contrast, indefinite integration takes in a particular function and returns a 

whole class of functions which differ by at most a constant. Definite integration takes in a 

function and returns a number which is the signed area under the curve. So, how is it that 

differentiation and integration are inverse processes, the inputs and outputs of the 

processes don’t match like you’d like. As functions of functions we can say: 

 

  

 

The integral is an inverse to the derivative in a certain way, let’s explain 

how. It is not quite as direct as you might like. Suppose that  is a particular 

antiderivative of  and , that is we assume . 

Furthermore, suppose that  such that , the FTC yields 

 

  

 

for each such . Now we can differentiate this with respect to , 

 

                                                 

 

this is how differentiation and integration are “inverse processes”. Now we 

can just as well integrate over other varying bounds, here I am thinking of 

 as being functions of , we still find  thus, 

 

  

 

We had to use the chain rule here and it produced the extra factors . All of the 

examples in this section are based on these somewhat silly calculations. 
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Example 6.4.1: 

 

 
Example 6.4.2: 

 

 
 

Example 6.4.3: 
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Example 6.4.4: 

 

 
 

Example 6.4.5: 

 

 
 

I hope these examples provide enough variety for everyone to get the idea here.  
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6.5. INTEGRATION BY U-SUBSTITUTION 
 

The integrations we have done up to this point have been elementary. 

Basically all we have used is linearity of integration and our basic knowledge 

of differentiation. We made educated guesses as to what the antiderivative 

was for a certain class of rather special functions(see pg. 143). Integration 

requires that you look ahead to the answer before you get there. For example, 

. To reason this out we think about our basic derivatives, we note 

that the derivative of  gives  so we need to multiply our guess by 

-1 to fix it. We conclude that . The logic of this is 

essentially educated guessing. You might be a little concerned at this point. 

Is that all we can do? Just guess? Well, no. There is more. But, those basic 

guesses remain, They form the basis for all the rest of the integration we will 

learn for this semester and most of calculus II. 
 

The new idea we look at in this section is called “u-substitution”. It amounts 

to the reverse chain rule. The goal of a properly posed u-substitution is to 

change the given integral to a new integral which is elementary. Typically we 

go from an integration in  which seems incalculable to a new integration in 

 which is elementary. For the most part we will make direct substitutions, 

these have the form  however, this is not strictly speaking the 

only sort of substitution that can be made. Implicitly defined substitutions 

such as  play a critical role in many interesting integrals, we will 

deal with those more subtle integrations in a later chapter. 
 

Finally, I should emphasize that when we do a u-substitution we must be 

careful to convert each and every part of the integral to the new variable. 

This includes both the integrand(  ) and the measure(  ) in an indefinite 

integral . Or the integrand(  ), measure(  ) and upper and lower 

bounds  in a definite integral .  
 

Example 6.5.1: (notice that we replace dx and the integrand) 
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Example 6.5.2: 

 

 
 

Example 6.5.3: 

 

 
 

Example 6.5.4: 

 

 
 

Example 6.5.5:( the bubble mentions an implicit substitution which works here) 
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Example 6.5.6: 
 

 
 

Example 6.5.7: 

 

 
 

Example 6.5.8: 
 

 
 

Example 6.5.9: 
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Example 6.5.10: 

 

 
 

Example 6.5.11: 

 

 
 

Example 6.5.12: 
 

 
 

Example 6.5.13: 
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Example 6.5.14: 

 

 
 

Definite Integrals involving u-subtitution: 
There are two ways to do these. It is best if you understand both methods. 

 

i. Find the antiderivative via u-substitution and then use the FTC to evaluate in 

terms of the given upper and lower bounds in . (see E15 below) 

 

ii. Do the u-substitution and change the bounds all at once, this means you will use 

the FTC and evaluate the upper and lower bounds in . (see E16 below) 

 

I will deduct points if you write things like a definite integral is equal to an indefinite 

integral ( just leave off the bounds during the u-substitution).  The notation is not 

decorative, it is necessary and important to use correct notation. 

 

Example 6.5.15:( we use Example 6.5.12 to get started) 

 

 
 

This illustrates method i.) we find the antiderivative off to the side then calculate the 

integral using the FTC in the x-variable. Well, the t-variable here. This is a two-step 

process. In the next example I’ll work the same integral using method ii.). In constrast, 

that is a one-step process but the extra step is that you need to change the bounds in that 

scheme. Generally, some problems are easier with both methods. Also, sometimes you 

may be faced with an abstract question which demands you understand method ii.). In 

short, you should strive to understand both methods. 
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Example 6.5.16:( same as Example 6.5.15 but with method ii.) 
 

 
Of course both methods give the same result. This is good, otherwise math would be 

much harder. Or perhaps it would be easier, but useless. I digress. 

 

Example 6.5.17: 
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Example 6.5.18: 

 

 
 

Example 6.5.19: 
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Example 6.5.20:( this substitution is at a whole other level of insight) 

 

 
 
You might ask the question why choose the u-substitution given in E20? The answer is 

experience, calculation and a lot of creativity. There is a less inspired way to do this 

integral, but the method below uses the technique of partial fractions. We will treat that 

technique next semester, I include here just to accompany E20.  

 

 
 

(The calculation above is not part of the required material for calculus I) 
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Summary of U-substitution: 

 
We look at the given problem and try to see if there is some way to reduce it to an 

elementary integral. There is no general method to choose . Frankly, it requires 

creativity. If you want to know the algorithm then the best answer I can give you is to 

work many problems, then work some more. Have you worked enough? No. Go work 

some more. Once it is completely boring and you can see the u-substitution as soon as 

you see the integral then your done, you’re ready. Before then, you should worry. But, 

turn that frown upside down with diligent work, don’t despair, just get back to the 

examples and leave no stone unturned. Be warned, I expect mastery of this topic. I will 

ask challenging questions. 

 

 

 

 

 

 

 

 

 

 
 


