6. INTEGRAL CALCULUS

In the differential calculus we began by studying how to use limits to define the
tangent line to a graph. We then defined the derivative, saw how to calculate the
derivatives of basic elementary functions, then their sums, products, quotients and
composites. After that we saw how logarithmic differentiation allowed us to
compute the derivatives of inverse functions. Having established the calculational
foundation we proceeded to study how to apply derivatives to a number of
interesting applications. Mainly we have seen that the derivative describes how a
function changes with respect to its input variable. This in turn gave us much
geometric information about the graph, particularly increase/decrease and
concavity.

We now change gears a bit, a different question motivates integral calculus. How can
we calculate the area of a curvy shape? This question is ancient. The Greeks and
Chinese thought of dividing a given curvy region into smaller shapes which have a
well-known area. The area of a rectangle is length times width, this defines area.
Then for a shape more complicated than a rectangle we can imagine filling it with
lots of little rectangles and then the area of the shape would be the sum of the areas
of the rectangles. This method required a large investment of arithmetic. The
definition of area has not changed, in fact intuitively we still agree with the ancients.
What is new is what Isaac Barrow discovered and Newton, Leibniz and countless
others developed. They learned that the derivative contains information about the
area in a somewhat indirect manner. The integral and derivative are said to be
“inverse processes”. This idea is made precise in the Fundamental Theorem of
Calculus (FTC). The FTC will allow us to find the so-called “signed-area” under a
curve. The full resolution of the area problem will have to wait until the next
chapter.

Integral calculus need not much harder than differential calculus. However, you will
find it is nearly impossible unless you already have a firm grasp on the differential
calculus. If you have uncertainty on doing the basic derivatives I suggest you remedy
that before getting too far into this chapter. When I say it is not much harder that is
directed to the student, I am careful to choose those problems which have simple
solutions. In contrast to differential calculus we will see that it is very easy to come
up with functions which have integrals such that formula in terms of elementary
functions exists.

The example that follows next is rather unusual, [ just want to illustrate how you can
find areas even without the FTC. There is something subtle here, we have never
proved that 3.1415... really is the ratio of the circumference and the diameter. There
are proofs of 7, but I don’t think its in Stewart or my notes at the moment. So when
we prove that A = 7 R? its not a complete proof, we ignore the question of
motivating the value for 7 itself.
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6.1. AREA UNDER A CURVE

We can approximate the area under the curve y = f(z) by dividing the shape up into
a bunch of rectangles. The more rectangles we use the better the approximation of
the area. For example, here is an illustration of the approximation of the area under
y = f(z)fora < 2z < bwhere the left endpoint of the rectangle is used to set the
height of the approximating rectangle.

Y

e ¢
XS Xn =b

We use boxes or equal length. To find that length we take the total length y — ¢ and
divide by the number of approximating rectangle n. There will be n-subintervals.

Xy = O \
X, = 0+ AX
X, = 0+2hx
X, = oo+ nhXx
swbinkeived
. S,
" X Xy X3 vee Xaop X, b :

The illustration used left-endpoints to determine the height of the rectangles but
there are four other choices that we need to mention here:

. Leftendpointrule (L,)
II.  Right endpointrule (R,)
[II.  Mid-pointrule (M,,)
IV.  Riemann sum, uses arbitrary point as sample point (R,,)

We will give formulas for the first three cases. The fourth case we will use to define
the definite integral, the freedom to choose any point in each subinterval is
important to our proof of the FTC. It can be shown that as n — oo these various
approximation schemes will converge to a single value, the area under the curve
y = f(z) from z =a to x = b. This “area” can be negative if f(z) < 0 for some
z € [a, b]. So we will refer to what we are calculating as the “signed-area”.
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I'll let you calculate a couple of these in the homework. The midpoint gives the best
estimate in many cases, but the precise estimation of error is too involved for this
course. | encourage you to take numerical methods if that sort of question is

intriguing.
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We can calculate these sums for any function which is continuous. In fact, we could
even calculate these for a function which was discontinuous at a finite number of
points. If you think about it we can just add together the area under each piece of a

piecewise-defined function.
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Definition6.1.1: (Definite Integral; Riemann Integral)
Let a function f be continuous at all but a finite number of points on

the interval [a, b] then we define the definite integral of f from a to b as

follows:

b—a

b n
/a’f(x)dx = nh_{g);f(xz*)Ax where Az = -

The sample point z;* € [z,_1, x;], but we make no particular restriction
on the choice, we can use any point in the subinterval provided it has
f(z7) € R (avoid discontinuities). The function f(z)is called the
integrand and the value « 1s the lower bound or limit of integration
while b 1s the upper bound or limit of integration. We call dx the

Notice that this definition allows us to use the left, right or mid-point rules if we are

asked to “calculate the integral from the definition”. This is still a daunting task for

even simple functions.

Example 6.1.1: ( not an efficient method to calculate area!)
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Notice that the width of the rectangle Az = b:—L“ goes to zero as the number of
approximating rectangles goes to infinity. Intuitively, Ay — ¢z and ¥ — [. The
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integral is an infinite sum, Leibniz used | to enforce the notion that the integral is a

summation. Technically, dx is not a number while A, is a number, it is finite while
dz is known as an infinitesimal. We will find that infinitesimal arguments provide an
essential tool in the application of integration to real-world problems. 'm getting a
little ahead in the story, let’s get back to the basics.

Definition6.1.2: (Indefinite Integral; antiderivatives)
Let a function f be continuous at all but a finite number of points on
some subset U C R then we define the indefinite integral of f on U as:

/f(:v)d:r; = F(xz) where % = f(z)

where F'(x)1s a family of functions which includes every function G(z)
such that ¢£ = 9% on U. We say that G(z) is an antiderivative of f(z) if
4% — f(z). The function f(x)is called the integrand and the integral is

dx
called indefinite because it is not definite, it has no upper and lower
limits. We also call dx the measure of integration in this context.

I should mention that the family of functions F'(x) is the most general
antiderivative. We may carelessly refer to [ as a function, but strictly
speaking this is incorrect, [ f(z)dz is actually a whole family of functions.
For example, if f(z) = 1 then [ 1dz = 2 + ¢ while we could say F(z) = x + 2 is
a particular antiderivative. Since the whole family of functions have equal
derivatives it follows that they differ by at most a constant by Theorem 5.3.6.

At this stage you would rightly chastise me for calling this an “integral” after
all what does this indefinite integral have to do with area? Let’s focus on a
really easy example. Let y = f(z) = 1 let’s consider the area under the curve
on [1,b]. An antiderivative for f(z) = 11s F(z) = x. Look at the graphs,

91 4= Fe)=x

21 Flb)-FO)=b~—I

\ A 9=f(x)=1
5_14 |

\ | b %

You can see that the change in the antiderivative over the interval gave us
the area under the curve in this case.
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Can we generalize this example? What if anything can we say in general
about areas and tangent lines? In particular we should think about the
tangent line to the graph of the antiderivative. What will this tell us about
the function? Is there some way to pick the height of the approximating
rectangle that uses the derivative of the antiderivative on the interval? Recall
the Mean Value Theorem for y = F'(z) on the interval [z, z1] tells us that
there exists ¢ € [z, 1] such that

F'(c) = F(quz : i(xl) _ F(ZO)A_;I;F(JH)

We can choose the sample point to be this point; 27 = ¢. Since F' is the
antiderivative of f we find f(z1*) = (F(zo) — F(x1))/Ax

fz1") = (F(xo) — F(21))/ Az = | f(a1") Az = F(xo) — F(x1).

Here’s a picture of how the Mean Value Theorem works for F'.

T4

'R

AF= F(x)-F(x)

AX = X, =X,

lpo4) . F(x)-Flx) - AF
‘?(x')- X, =X, - A%

of X Xo ) X
< AX ]

Remark: 1 suppose this makes sense to look at the Mean Value Theorem, it
does give us a link between the derivative and the values of the function. Of
course the values of the function will go toward what the area is under the
curve. So, if the function f is the derivative of another function F' then it
stands to reason the derivatives of F' should tell us about the area under f.
And more than that, the derivatives of F' are related to the values of F' and
hence the area. A more direct argument to try to begin is to use %, after all
the derivative is related to the function through the mean value Theorem.
However, the way in which they are related is not helpful in calculating the
definite integral.

Goal: find a nice formula for the definite integral that uses the antiderivative.
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Proof of the Fundamental Theorem of Calculus: (we use the discussion above
to motivate our choice of sample points in the Riemann integral)

We will pick the sample points in the Riemann integral below to be those
points such that the Mean Value Theorem is satisfied for the antiderivative
on the given subinterval. That is we insist that «} € [z;, 2;,_1] such that
flz*) Az = F(x;—1) — F(z;). We are free to choose such points because the

antiderivative is by definition differentiable and continuous. Thus the Mean
Value Theorem applies to F.

/a " fe) do =l ( Z f(a?) Da )
= ,}LH;O< En: [F(x;) — F(xi-1)] )

=1

= lim ( [F(xl) — F(zo) + F(z2) — F(z1) + -+ F(z,) — F(J:n_l)] >

_ :1;1:( [—F(x0) + F ()] )
- 7}3&( [—F(a) + F(b)] )
= F(b) — F(a).

This concludes the proof of the Fundamental Theorem of Calculus (FTC).
Lets state the result:

Theorem 6.1.1: (Fundamental Theorem of Calculus) If f is continuous on [a, b] with
antiderivative F'(z) then

/ (@) dz = F(b) — F(a).

This result clearly extends to piecewise continuous functions. We can apply
the FTC to each piece and take the sum of those results. This Theorem is
amazing. We can calculate the area under a curve based on the values of the
antiderivative at the endpoints. Think about that, if « = 1 and b = 3 then

ff’ f(z)dx depends only on F(3) and F'(1). Doesn’t it seem intuitively likely
that what value f(2) takes should matter as well? Why don’t we have to care
about F'(2)? The values of the function at x = 2 certainly went into the

calculation of the area, if we calculate a left sum we would need to take
values of the function between the endpoints. The cancellation that occurs in
the proof is the root of why my naive intuition is bogus.
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Remark: the variable inside the integral is known as a “dummy variable of
integration”. We can write another letter in the place just the same. Overall
this integral is not a function of z, rather it is a number. We can write:

/ab f(z) dr = /ab f(t) dt = /ab f(u) du= F(b) — F(a).

In contrast we cannot say the same for the indefinite integral. When we write
[ f(z) dz we have a family of functions of z, on the other hand [ f(¢) dt that
would a family of functions of ¢.
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6.2. INDEFINITE INTEGRATION

In this section we discuss all the elementary integrals. We find these by educated
guessing. We know the derivatives, we just have to go backwards and tweak it a bit

here or there.

Example 6.2.1: (here we discuss the meaning of “c”)

ig;b .F(x)-_—.- > potie +hod Fhere are WM&-’EQ antiderivetives o{X:

F{—(X\ = -%Xt s antiderivative of f becauce %(%Xz)ﬁ X

F—: x) = ‘%;_‘Xaﬂ- '3; is olee an ad. of £ becuuse d%(%xa+3) = X

gxc}x — _%(»z_k C s 4he indefinite EI\%@@!J of X,

there are \
Man p\n‘h‘&eflvﬂm\/@‘ \,
L. & Pw‘f\'twla\r’f

"ﬂmn aﬁon

-

ﬂﬁ Valar of € s lef# aréi*ﬁ‘?a!/@ 5o */fwﬁ #e ‘
1 dets nide /n?’efﬁ ol is tha ek an ffJema/wﬁJe / e
snelades  edl pés;x'é/e antidervatves i Ff,. or K ... )

Example 6.2.2:

E2
. “{}\(33)(_’_ 2)0‘)( he §3gx¢ﬁx ot Szc@x
= BSEK&X + 2 gaﬁx

" X Wi 5 of ‘
i ?ée +C, 2K + C;. * Jff//?fca;f:;fé Qag{’&auz/f/

=«;,,><
ikde 2% + CJI

Lets check our answer,
. x
fé(?e’%?x»«.c)ﬁ Be + 2 |
The derivative of Hhe antiderivetive is fe }fafeﬁmn/ , A check-.

()
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Example 6.2.3:

sh(x)dx = smalx) + C

sihh (x) dx = Coch (X) + C

Sin (dx = =Cos(x)t C P~

N e gigns are
/} »op{)osﬁ%%‘ of thete

of d@w enhiation
above /'nﬁé)n\.& ¥ .S:'m/;:ﬂle’ i
how ‘f& c/r#e(@n#l'ﬂ/ So I Yadd hoave 7Lo ﬁ?in}'{ &aoﬁ :l/w/:'
In euch cose Z ash Maref-p{’ whob fonchion €9n
2 J/Herentiate 4o 3&5@ +ha /'n%eﬁ,/oﬂa/.

Cotssiny, Corriiy, ey oy

cos ) dx = S+ C

///ou) a[lcj I hﬁuw ’ﬂ\i

Summary of all the basic integrals including a few you are not
expected to memorize in Calculus I:

£69 Foydx - ¢ |
1 X
X +x°
x? £33
2 %
% g%
n +| 1)
™ ﬁlﬁxn (a=-1) F(X) S{l(x)dx -c
-1 |
X= =5z Ja () (n=-1) sinh (x) cosh (x)
ex ex cos‘ln (x) sinh (x)
- |
5 R =% iiiiea
X 3 b 3 " =il ai -
= L & @ T Far!(x)
Cos(x) Sin (%) f 5.1 sinh™
n (%
Sin (x) - Cos (%) NT+ % ()
sec? +a | -
ec*(x) _tTan (><7) L cosh '(x}
Sec(x) tun (k) gec (x) X5
csc? (x) - cot (x) | :
Cs¢ (%) Cot(x) -cse (x) | — w2 Fank (x)
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All of the basics summarized: what you need to know:

'DEQ”/ F o ‘Hf\c( owkidocivative of £ i = (x) = _F()() ) Tl:g m;;:um\
%m@r& mv’\\%&m\j,ﬁ\ S xg; «4\“{\@ QMQQ;{WA\*\-@ m( ﬁ, M{ S “Fﬁm) t:i\: me;&ﬂ;f‘u%_

L gg(@(ﬂ&x mﬁm

I. list belww aWl_the bosic C‘“ﬁde‘r“’“&“’ﬂs QV\& Ahey're cotresponding, ofer"wu:&qu

Jox = xec fhec)= A0+ de) = 1

I dx = ﬁ:\j,& d /ony amy
} o € | WOX) = 0X

* dx = fnlxj+C S (mixi) = L

te&(xianu-.*saMx 2l ke e
*C P (::mou) = Cog(x)

S (X = ~cos(x) 4 ¢ gi(ms(x)) .,_,_ -GN (x) |

sec? (x1dX = Hanbd+ ¢ i(mw = Sec?(x)

secbxjtanidx = Seck)+ C (wdx)) = Sectx) don (x)

cse entix ldx = =Ceix)+C &FE (%C@"Z = = CSCX) {"@4‘45(&}

Sdx= e | d0) = ¥
m‘“c (o) = I

= taix)« C d%(-bm“'(x}) = T«*%(?

dx=sa i) re | o =
&‘U*X‘dx e | Sl = o

)
|
)
S
|
chc CIEX = cat (g gz(com\ = - escfix)
J
j
ol
T
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Example 6.2.4, 6.2.5 and 6.2.6:

@ Use /’aﬁz‘smrwr%@ so breake ¥ &2,

\/f’\xav'r--‘;.’j + St (x} + 3'X)d7>< =

g\
a

=

/X (el + G +Sine * 3 )JX

wj\ e j

. 9 ot )
X%+ 3%+ 9y - Cos(x) A’n{f} +C/

5]

4

s« 7)o = 2 [ v v i &

= tﬁﬁmm’{x) + I tan (x) + C]

@ ( (X*L)jdvs _ "

{ 6‘? 2
A x VX + 3% 3+ |
I ‘ J X ox

S(Xz-f» 3Ix + 3 \'t- %)dx

= \__;—x3+ 2 +3x « Mnlx] + C {

Much more can be said about indefinite integration. All we have done so far is to pick the

easiest of examples. We will learn u-substitution this semester and then a variety of other

techniques to calculate indefinite integrals next semester. Generally it is a much more

challenging problem than differentiation.
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6.3. EXAMPLES OF DEFINITE INTEGRATION

We proved the FTC in the first section of this chapter. I now give a simple, non-rigourous

proof for the FTC, maybe you will like this one more.

ﬁnféﬁ:@ﬂ?ﬁfﬂw of Codewdus (FTC) ‘"‘“\:;l_%y
Let £ be continvous on (a,b6) Luith antyderi vative /E/;neo.m’ﬂ(j‘ F’(xj::/‘/xy)

[Prevdx = F(5) - Fa)

i R

ch'/ See. peog 36 The P(DO‘F s et 'm*u:‘)?"««)ﬁ,b@ a‘{‘wiéws/ bud Wt BMILO’QL&' Al

o0 = f 2= %:% as  AX—> O
= A F o= A%
= TAF = g F)aX
PO T R 5 b
= )Py = (fidx
(=% /;//
Example 6.3.1: (we did this before, contrast with Ex. 6.1.1)

?

i Ei §2@+2>&Xﬂ[%xi+2x
:cu:aa(\f\} 0

o
L Pl AR
(lzg ku;) m(;,:o +?frzm)

= ‘%-'kep;

i

Example 6.3.2 and 6.3.3:

':ﬁﬂ
@ &S'm (X)dx = —¢us(Q
o

= = cos(n) = (=ces(o))

2]

L
' <« He bar means : g
N ovoluste -ces k) Prom € h T

o

~ \ ,zg a’%
S

= Fla2) - L)

L STE
o | 4n(3) |

ED o' x4 o
%‘,W ok
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Properties of Definite Integration:
These can be shown by direct calculations from Definition 6.1.1.

We assame 4hadb o, b, ¢ m M are af independent of >, Hey're constonts,
- f f6)dx = f £ )dx waxmfwuj;%)dx

L (Fea2960)dx = wax x L‘acx)d_x féfcwx =c ﬁ(x; dx [

S——
SR

Tha nexs S:af?f af;/apeﬂ“{/ef e et ar &/ﬂé‘ﬁ ,fmﬂd A t are 4
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|

6| fezo o asxeh = [Tfmdx = o

3 F&) 296 for agxsb o f:aﬁwulx > Sbs(x})dw

BIm =6 <M foe wexst > mib-a) 5 [Yeouk <M (b-a)

Example 6.3.5 and 6.3.6:

- \., e

o ) 6
N @ S IX|dx = ‘g IX|dx + &ix\&x S Xdx + Xx,&x =
1 - /'”"'—'M‘ Slomty, o S = ¥

\-C@mwb\% dia I break W into tuo pieces """“’\W“"‘a‘)

Ee] Mehw O0g )< T e oex<cow s

W
0 < S “un™ (x) dx -.:(izm“:;)ul;f“ = Zm
E T

The problem of finding a good upper (M) or lower (m) bound for a given
function f can be quite challenging. However, if the function is strictly
increasing or decreasing on the interval [a, b] then the values of the function
endpoints of the function provide convenient bounds. Property 8. is at least
gives us some estimate of the possible values that fab f(z)dz may take, even if
the antiderivative of f(z) is out of reach.
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6.4. INTEGRATION AS AN INVERSE PROCESS

Sometimes you’ll hear someone say that differentiation and integration are inverse
processes. This is true in a certain sense. However, unqualified this is a dangerous
statement. Differentiation takes a particular function in and then it outputs another
function. In contrast, indefinite integration takes in a particular function and returns a
whole class of functions which differ by at most a constant. Definite integration takes in a
function and returns a number which is the signed area under the curve. So, how is it that
differentiation and integration are inverse processes, the inputs and outputs of the
processes don’t match like you’d like. As functions of functions we can say:

%:C”(R) — C™(R) /:CW(R)%wa(R)

The integral is an inverse to the derivative in a certain way, let’s explain
how. It is not quite as direct as you might like. Suppose that F is a particular
antiderivative of f and a € dom(f), that is we assume F'(z) = f(z).
Furthermore, suppose that € R such that [a, 2] C dom(f), the FTC yields

/ fu)du = F(z) — F(a)

for each such 2. Now we can differentiate this with respect to z,
d [* dF
= [ =@ = fa).

this is how differentiation and integration are “inverse processes”. Now we
can just as well integrate over other varying bounds, here I am thinking of
A, B as being functions of x, we still find ff f(u)du = F(B) — F(A) thus,

dB dF dA
/fu Bl T

—f<%——f<ﬂA

We had to use the chain rule here and it produced the extra factors 42, 41 A]] of the
examples in this section are based on these somewhat silly calculatlons.
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Example 6.4.1:

X
—5—(] COS(ﬁ)du) o= J//—(X) /-./3)/ L Uiihy Fre
z

T = fo) - O F(3) /s a consoat

= fx) - Fx) = £x),

= [cos (3%). |
Example 6.4.2: i
2
J(fx - J ledds = Le

5 € dt| — 2 (x?)- ¢ i adbive
dx xS dx /‘_ (X ) F(")) "\‘;&ﬁ&\;de v%ﬂf\/

= 22X F(¢) = F1x) ¢ Chuin Rk

= Zx £ (xt) = £(x)
= [Zx ol e‘xz]

h ev /L%J&/ '7'e -A)ru:/ P e ///cr;f“/ / ﬂe
G»m M V\/e nevér gn’w’ ‘::Dele é‘n}mou

oL H fanchone (7
gﬁmt(wﬂu% X/Iﬁ'znce of Hha anf'e/c/aﬁ-u/l\Jw.

Example 6.4.3:

The  sine ,",,;l%,f‘.f Fanchon S(X}E‘/X%df where @

0/@14&2 S} (0) = 0 ﬂ\ I -ﬂwr\ Ao - o - &
v ‘ < s tn el U(”(ic < neel:
anJ in $he J.Ma J O'P?lfcs feq (3 J na,‘ e IMA'

(o) =)

= 2 (Fe) - Fe0) DETE v £l =Skt
ondl & \:-p“]‘lu mw"’icjer

= fx) = E__..._s""‘{sz ot
Fu - o Lol
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Example 6.4.4:

S (x) Fix) = £6x)
= %XZF/(XZB} _CDS(X)F’(:f,l(K)) : Chain rode

— Lgxzm = @ 09)~[Sin g |

Gomment: T could have /o/cfamfu/«f“ and Hem o/m%femér&o/ but Hhe

s much  easle

- o/ X:;? \ )
f d"): f(’r(xiﬂ-i—‘(m(x))) ; feosix

Example 6.4.5:

Let £ be wnhnens euenawkw,

d Rk 0 = df =/ ) ¢ FTC whane
o (sz”u)dj) B W( = (x) - F )) Flx) = )
= — F/(-x) —2xFx¥)

< [ f£x) - 2x £ (<)

I hope these examples provide enough variety for everyone to get the idea here.
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6.5. INTEGRATION BY U-SUBSTITUTION

The integrations we have done up to this point have been elementary.
Basically all we have used is linearity of integration and our basic knowledge
of differentiation. We made educated guesses as to what the antiderivative
was for a certain class of rather special functions(see pg. 143). Integration
requires that you look ahead to the answer before you get there. For example,
[ sin(z)dz. To reason this out we think about our basic derivatives, we note

that the derivative of cos(z) gives —sin(x) so we need to multiply our guess by
-1 to fix it. We conclude that [ sin(z)dz = — cos(x) + c. The logic of this is
essentially educated guessing. You might be a little concerned at this point.
Is that all we can do? Just guess? Well, no. There is more. But, those basic
guesses remain, They form the basis for all the rest of the integration we will
learn for this semester and most of calculus II.

The new idea we look at in this section is called “u-substitution”. It amounts
to the reverse chain rule. The goal of a properly posed u-substitution is to
change the given integral to a new integral which is elementary. Typically we
go from an integration in 2 which seems incalculable to a new integration in
u which is elementary. For the most part we will make direct substitutions,
these have the form u = stuf f in 2 however, this is not strictly speaking the
only sort of substitution that can be made. Implicitly defined substitutions
such as z = sin(f) play a critical role in many interesting integrals, we will

deal with those more subtle integrations in a later chapter.

Finally, I should emphasize that when we do a u-substitution we must be
careful to convert each and every part of the integral to the new variable.
This includes both the integrand( f(z) ) and the measure( dz ) in an indefinite

integral [ f(z)dz. Or the integrand( f(z) ), measure( dz ) and upper and lower
bounds a, b in a definite integral [’ f(z)dz.

Example 6.5.1: (notice that we replace dx and the integrand)

" . | —
L fxexdx = jxe“gg .@...&J M= X |

“
= 1{e"dy
w
....3@:‘ + C

::)%@X%*Ci
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Example 6.5.2:

= '305 12 i [ U= ax+b
- _1 ,.MN s C S

Dtk g = [sl) ——

i
w
v
3
O

G

\5 5%+ C |

G |

Example 6.5.4:

U 8 e — Ao —
o (tna = [Zowax 4 U= 500
* [T - sin s dx= =dY
o S Sgﬂw<:!ﬁ) // ; ax " sin o

WU sl

=-S;\'Idu

[

=fnlu] +c
= {-ﬁn Ims(x)l + C [g = ﬂnlSec(xﬂ’rC-

i

Example 6.5.5:( the bubble mentions an implicit substitution which works here)

ES] fa2x gy = [2x du . | u=x
Jexe g teus 2x v 1 U _ 2y =» dxs= dY
;. il T o2X
- du D e e
|+ u Py T" \/Ou tan ako @t\uj “Yan @n
-~ . Codewdode this Tntegrol LY sub.
= ton'(u)+ C . - i /
F ; ( z) c 1+x (er x = ‘r«::b;dw A@
— . x ~pe J Sldbb = C\ .................
= m = tan™x _wig_;b?—f“fﬁl}
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Example 6.5.6:

H s [y

\
- - u}-‘ﬂ
33 T C
=-13y% 1+ ¢

Example 6.5.7:

Eij ‘im‘.mdx =

X+b

Example 6.5.8:
,sz_ X'-& X-! [ = X’“
™ w g X Ci)(
L= %*®
= g_.f._.dﬁ_
Tw~ ~2x
= %X'JV’du
= =k 7
52U 4+ C
L . - 2
-+ cf
Example 6.5.9:
E9 1 (x ,
&_ 2028 dx = g"ix&u
X X
- SU&M
—~ = tut+C

= E(ﬂn(x))z + C j

= \=-x?

d‘u W Lo
\ == X

v
0%

|-

K ﬁm - e i
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Example 6.5.10:

Ewo . o —
& s\n(30)d0 = X smm}ﬁi?fi : «m«{ %&l e . 4p- _cj;';g.7
& E3

=3

= Tpeos(u)+ C

= \"-%c@s(sa) +c ]
J

Example 6.5.11:

Eu ! C w
sin (x) - U /= = s\
g-q:a—:é)( — XW@\ X2 ﬁu) v 0 {x)

VoRE du { .
= fud k= R
= 2+ C

2 ,‘L,/‘@'

- :) 3ET) + ¢ 7 A
o M\&" \\!:\ \\

u"\\‘
N
Example 6.5.12:
El2 g X P e,
teos (£% ) b = f-é—c ) di e | U= t5+ 7 )
( }d'& 03{ ) Zt &"“é - zﬂﬁ - dih & S,{Q,/
. | & 27
h = ~2'—3 Cos (u) du - e —
= 35in(u) + €
=|3$in (ts+) -M:”]
Example 6.5.13:

Sin*ede = j(s-wma@ )sin®d©

= j\(} - u ‘&) S[‘vi“',! @ “g;a_{._ - - u o @

=S & du _ o do = o
sl 2 Jge =% & s dE = A
= X(’M - | )Q?M ~5in @

= ‘3’7'143—-LL+C

Mt SR

= Feve —wmoe ic]
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Example 6.5.14:

E/l'/ l d){ - ya\a ;ﬁO
02+t - EMW)‘%“ dx ) Qssame @,

.

|

= LV O U= Ya \
o S b+ ud adu dw _ % dx =
™= w = dx=adu

= Lo ,
= tan(w) + ¢
3\:&3'¥m"l(%‘:) + Cj

Definite Integrals involving u-subtitution:
There are two ways to do these. It is best if you understand both methods.

1. Find the antiderivative via u-substitution and then use the FTC to evaluate in
terms of the given upper and lower bounds in z. (see E15 below)

ii. Do the u-substitution and change the bounds all at once, this means you will use
the FTC and evaluate the upper and lower bounds in «. (see E16 below)

I will deduct points if you write things like a definite integral is equal to an indefinite
integral ( just leave off the bounds during the u-substitution). The notation is not
decorative, it is necessary and important to use correct notation.

Example 6.5.15:( we use Example 6.5.12 to get started)

El5 5
]

- ,
teaste )t = &IS!'M’*% 7) + C/m
2]

| = {:-21 sin (%‘m) + Qj... [_é Sin(TT) + ﬂ]
= 350 (*%)

- £

This illustrates method 1.) we find the antiderivative off to the side then calculate the
integral using the FTC in the x-variable. Well, the t-variable here. This is a two-step
process. In the next example I'll work the same integral using method ii.). In constrast,
that is a one-step process but the extra step is that you need to change the bounds in that
scheme. Generally, some problems are easier with both methods. Also, sometimes you
may be faced with an abstract question which demands you understand method ii.). In
short, you should strive to understand both methods.
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Example 6.5.16:( same as Example 6.5.15 but with method ii.)

2 mf (£3+ 7r)dt ZZ;(M) dy “‘“wm:wﬁ: e
¢o = = 1 '
j;} s (¢ 77) JTr 2t %"{-:Z‘t A5 df‘;g’%

. e/ UERY =T

= 2 Coswan U = T - |
n— S e TS "a»‘

_ . 3704, The bounds must ckmfyf
= _2’. Sin (M)/n_ when we ckmae the

Voriable of }r\*ecﬁm\‘ﬁon,

I k7,7 W AN
=4 Stn( /g;} g.ﬁmﬁ}

Of course both methods give the same result. This is good, otherwise math would be
much harder. Or perhaps it would be easier, but useless. I digress.

Example 6.5.17:

S A

. e _ ) . = \
w...&ﬂ X i?'q,ob,_m &X e ;\:::H"a {W} de'sg L A = 'UO‘(} = "V;(M é
% dv . L

yr X T ZK&;{

ULY) =497 =27 f’

b
= g Zsio (wydu
pAis

UCF) =47 =37

2T
= =2cos (U} Pf’
2w

= ~2cos (31) + 2¢os (zM)

-
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Example 6.5.18:

El§ A /03
29 Mvodo = Plerel* 5| =i+ | ( W3) vy
™ N K] \9‘” (%) + ";-;. | »

5 und@dO = é:f.,e de
~ (=278 sine de
€os®e
2 ] U= Cos & f
- - U/ et )
- S ,u?‘u (-olu) g% s egin® = -dU= sinQd @ /
o=t ! —
= S(u ua)du
i i "
= ﬂ“ [ cs 9’ 2 Cos20 M:CJ
Example 6.5.19:
EIY fanzo + 1 = sect®  and 2fwn8) = secto
§ sec®e d = S sec?© sect@ d©
X (l+%awﬁe>)z sec*©dO©
s — ‘ — \3
Y ] W Fan ©
% (+u*) du Lrﬂw - cec*® > sec’odE=dul
as

S(\ F2u + U )olu =
U+ ?su’aw-éuf»;«c

3&“:‘@*” & © + ——"’mn @"?‘CJ

e AT
G SR—— e

i

Sy, T obove wit
go wee Cew Hramn twkwiyﬁ &%aé’-tm*\f@ w‘ﬁﬂa"»iﬂ UJW‘G W’\e b res‘\

W4 W
SSQC‘G&._@ 3[47«%@3+%+w39 *é—iuvg's@,oq
6 = G‘un () + %) v *‘*“S{.WQ)) -0 ;uwcf Aon (1?2)5 |
w S5+ |0 +3

\s
~ [zg]

e

\&
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Example 6.5.20:( this substitution is at a whole other level of insight)

. The easiest sof? is offen e maest clever one,

= Jdu
j sec(©)de o

= fnlul + ¢
1‘[}?”/3&69 +/zm9/+ C}

*Whel’e %e S‘Wéf%%\f):#") ﬁ//awe/ %ﬂmﬁ»
—f{ tec 8 'fﬁn&) — sec C+und + sec?@ = sec¢ @('{'W\Q 4+ SQCQ)
&

Tn oAher woerds sine U = Sec O++tun @)
®

U as we
% = (SEC@)'L( = %{4— = secodo (e,{o.fmeJ oJwa&)y
e ¢ other wa
G‘Q\‘f: .E:: PN M»xﬁ‘gce%‘c\ Se !ﬂ

4o do Hhis r\.'kerwz bud Ahic iy
qu_ belew Aha less ?n:p(rea" meU\oJ/

You might ask the question why choose the u-substitution given in E20? The answer is
experience, calculation and a lot of creativity. There is a less inspired way to do this
integral, but the method below uses the technique of partial fractions. We will treat that
technique next semester, I include here just to accompany E20.

N -

P
jSecﬁole = ja;@ de
Cas © 4@
Ces?O
- ces o &8
| —$in%©
= [—td U6, |
J = [da = cs6do |

(s s [Pl ] e

= L(tnl1ou) - Joli-ul) + ¢

:%[u—s‘mel - ,Qm)}-s'me)l) +_Cj

C/eaf/g, l%e Z/' fu,éf‘fl’/kﬁ'an s ean'er/ l;( You btnow 4o Pf"(,j! /’1‘.
{8/0:"'/: o/m-S/ww that +he Fwo answes 4::’%%9 ?

same desp! ‘e their af/ﬁwe«aﬁ Aterence

SS— e

&}/M/— in 4o me soun /D/e;ue )

(The calculation above is not part of the required material for calculus I)
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Summary of U-substitution.:

We look at the given problem and try to see if there is some way to reduce it to an
elementary integral. There is no general method to choose . Frankly, it requires
creativity. If you want to know the algorithm then the best answer I can give you is to
work many problems, then work some more. Have you worked enough? No. Go work
some more. Once it is completely boring and you can see the u-substitution as soon as
you see the integral then your done, you’re ready. Before then, you should worry. But,
turn that frown upside down with diligent work, don’t despair, just get back to the
examples and leave no stone unturned. Be warned, I expect mastery of this topic. I will
ask challenging questions.

158



