Ma341-004: Test #2

Friday, June 14, 2005 Instructor: Dr. Bill Cook

- Show all of your work.
- Do not write your answers or work on the test.

#1 (24 points) Compute the Laplace transform, $\mathcal{L}\{f(t)\}(s)$, for each of the following:

(a)
$$f(t) = \frac{1}{\sqrt{t}} + te^{-2t} - 1$$
 (b) $f(t) = e^{2t}\cos(3t) - 5e^{-t}\sin(2t)$
(Hint: $\Gamma(\frac{1}{2}) = \sqrt{\pi}$)

(c)
$$f(t) = t \sin(t)$$
 (d) $f(t) =\begin{cases} 1 & 0 \le t \le 1 \\ t & 1 < t \le 2 \\ e^t - 2 & 2 < t \end{cases}$

#2 (32 points) Compute the inverse Laplace transform, $\mathcal{L}^{-1}\{F(s)\}(t)$, for each of the following:

(a)
$$F(s) = \frac{s+1}{s^2 - 2s + 5}$$
 (b) $F(s) = \frac{2s^2 + 3s - 1}{(s^2 + 1)(s - 1)}$

(c)
$$F(s) = \frac{e^{-s}(4s+2)}{s(s+1)}$$
 (d) $F(s) = \frac{12s}{(s^2+4)(s^2+9)(s-1)s^4}$

Note: For part (d), please give your answer in terms of a (multi-)convolution product

#3 (30 points) Solve the following initial value problems using Laplace transforms.

(a)
$$y'' + y = 2e^t$$
, $y(0) = 1$, and $y'(0) = 2$.

(b)
$$y'' - 2y' + y = u(t - 1)$$
, $y(0) = 0$, and $y'(0) = 1$ ($u(t)$ is the unit step function).

#4 (16 points) Use Laplace transforms to solve the following system of differential equations:

$$x' = x + y$$
 $x(0) = 0$
 $y' = x + y$ $y(0) = 6$

$$y' = x + y y(0) = 6$$