Introduction to Differential Equations: Homework on Systems of ODEs

Directions: Show your work, if you doubt that you've shown enough detail then ask. My instructions supercede the intstructions in the text.

1. (10pts) Do problem $9.1 \#$ 12. See page 84 E 3 in my notes. Also solve $9.2 \# 9$.
2. (10pts) Find the inverse of X without technology,

$$
X=\left(\begin{array}{cc}
\sin (2 t) & \cos (2 t) \\
2 \cos (2 t) & 2 \sin (2 t)
\end{array}\right)
$$

Find the inverse of Y, you may use technology,

$$
Y=\left(\begin{array}{ccc}
e^{3 t} & 1 & t \\
3 e^{3 t} & 0 & 1 \\
9 e^{3 t} & 0 & 0
\end{array}\right)
$$

3. (10pts) Do 9.4 \# 26 and 28.
4. (10pts) Find the eigenvalues and eigenvectors of the matrix below

$$
A=\left(\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right)
$$

then find the general solution to $\frac{d \vec{x}}{d t}=A \vec{x}$.
5. (10pts) Find the eigenvalues and eigenvectors of the matrix below

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

then find the general solution to $\frac{d \vec{x}}{d t}=A \vec{x}$.
6. (10pts) Complete $9.5 \# 50$.
7. (10pts) Complete 9.6 \# 19. For 10 bonus points on the homework you may solve the system and animate the behaviour, I'd like 3 distict cases illustrated. I believe there is a way of saving an animated .gif file, if you look at my calc III page I have an example of the code for that.
8. (10pts) Use chapter 9 techniques to solve $5.2 \# 38$. (I would like you to use the eigenvalue/eigenvector machine plus variation of parameters)
9. (10pts) Find the eigenvalues and eigenvectors and generalized eigenvectors of the matrix below

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

then find the general solution to $\frac{d \vec{x}}{d t}=A \vec{x}$. You should use the ideas we developed concerning the matrix exponential to form the solution. The next problem may help with the logic needed here.
10. (10pts) Suppose that A is a 9 x 9 matrix such that $\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}(\lambda-3)^{3}\left(\lambda^{2}+1\right)^{2}$. Furthermore, suppose that

$$
(A-I) \overrightarrow{u_{1}}=0 \quad \text { and } \quad(A-I) \overrightarrow{u_{2}}=0
$$

where $\overrightarrow{u_{1}}, \overrightarrow{u_{2}}$ are nontrivial and linearly independent. Next suppose that,

$$
(A-3 I) \overrightarrow{u_{3}}=0 \quad \text { and } \quad(A-3 I) \overrightarrow{u_{4}}=\overrightarrow{u_{3}} \quad \text { and } \quad(A-3 I) \overrightarrow{u_{5}}=\overrightarrow{u_{4}}
$$

where $\overrightarrow{u_{3}}, \overrightarrow{u_{4}}, \overrightarrow{u_{5}}$ are all nontrivial. Next suppose that $\overrightarrow{u_{6}}=\overrightarrow{a_{6}}+i \overrightarrow{b_{6}}$ is a complex eigenvector with,

$$
(A-i I) \overrightarrow{u_{6}}=0
$$

where $\overrightarrow{a_{6}}, \overrightarrow{b_{6}}$ are real vectors. Finally suppose that $\overrightarrow{u_{7}}=\overrightarrow{a_{7}}+i \overrightarrow{b_{7}}$ is a generalized complex eigenvector with,

$$
(A-i I) \overrightarrow{u_{7}}=\overrightarrow{u_{6}}
$$

where $\overrightarrow{a_{7}}, \overrightarrow{b_{7}}$ are real vectors.

Given all this data calculate the general (real) solution to $\frac{d \vec{x}}{d t}=A \vec{x}$ in terms of the given vectors.

