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MA 341, Introduction to Differential Equations

Instructor: James Cook
Test I: n-th order ODEs
Date: Tuesday, September 18, 2007

Directions: Show your work, if you doubt that you've shown enough detail then ask. If you need
additional paper please ask. There are 106 pts to be earned, 6pts are bonus.

1. (10pts) Given that v{0) = 10 solve
dv
| dt
If v represents the velocity of a cat thrown horizontally with an initial velocity of 10 then does
the cat ever come to rest 7 Here you can interpret the term —v as a frictional force. For a
bonus point find if the position of the cat is bounded, use v = dz/dt.
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2. g&} Assume that z * 0 for this problem. Solve
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3. (10 pts) Find the solution of
2xdx + 2ydy =0

that passes through the point (1,1). Notice this is an exact equation.
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4. m) Find the general solutions to the following differential equations, as usual we denote
D = d/dz and ¢ = dy/dz etc...
(a.) y"+ 6y + 9y =0
(b)) y"—y=0
(e.) (D®— 10D+ 26D)[y] =0
(d.) (D*+ 1)yl =0
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6”% Find the general solution of
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A¥. (10 pts) Use the method of anihilators to find the correct form for the particular solution

(don’t find A, B, C, ... just set it up) of the following differential equation, D = d/dz as usual,
(D+1)(D*+1)(D —3P[y)(z) = e
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7. (5pts) Use €' = cos(z) + isin(x) to show that
sin(2x) = 2sin(z)cos(z)

it is useful to first recall the formula for cos(x) and sin(x) in terms of .
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8. (10pts) Let us return to the problem of integration, given some h our goal was to find y such

that
f hdz =y

where we required that y is the antiderivative of h, that is
y = h.
With the above in mind, solve the following integral via undetermined coefficients.
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