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Assume that the surface of the earth is represented by the

(zy)-plane and that the acceleration of gravity is —gk. If a

projectile of mass m is launched from the origin with initial

speed v, at an angle o with the horizontal then find

(a) the position of the projectile as a function of ¢

(b) the time it takes to attain maximum height

(e} the range of the projectile

(d) Show that the angle o which gives maximum range is
a = 45°.

Assume throughout the problem that the initial velocity vec-

tor lies in the (yz)-plane.




PRoRLEM | & A train moves due north at a constant speed v. It passes a
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carousel one mile due west of the carousel at 1:00 p.m. Con-
sider two coordinate systems with origin the central point
about which the carousel rotates. The first system, z =
(€1, T2) is oriented in the usual East-West, North-South fash-
ion, but the second system is attached to the carousel which
is rotating counterclockwise with constant angular speed
w with respect to z. The rotating system is denoted by
Ye = (Y1, %) and at 1:00 pm. t=0and = w = =.

{a} Find the position of the train as a function of { as mea-
sured by .

{(b) Find the position of the train as a function of ¢ as ob-
served by .

(¢) Find the velocity of the train in both systems.

(d) At 1:00 pm a car is located at (nearly!) the same point
as the train and is traveling northeast at a constant
speed u. Find the equation of motion of the car in both
systems.

(e) If the train carries a coordinate system z; = (24, 2;2)
which is oriented like z and which lies one mile due west
of the origin of x at £ = 0 find the equation of motion
of a point on the rim of the carousel relative to z. To
be explicit assume the point on the rim of the carousel
has y-coordinates (a,0) for all .




