
Mathematical Models in Physics, Final Exam, December 12, 2006

Do all of your work on your own paper, please leave white space between problems. Notice that
in each problem I have used bold to draw your attention to what I want you to show. Relax, it
only looks long. Many of these problems are very short, make sure to use what you’ve already done
when you can.

Problem 1

(5pts) We can define det(A) implicitly by Ai
1
ei ∧ Aj

2
ej = det(A)e1 ∧ e2. Given that

A =

(

a b
c d

)

Show using the definition given above that,

det(A) = ad − bc

Problem 2

(5pts) Recall that if α is a p-form

α =
1

p!
αi1i2...ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip

then the Hodge dual is defined by

∗α ≡
1

p!

1

(n − p)!
αi1i2...ipεi1i2...ipj1j2...jn−p

dxj1 ∧ dxj2 ∧ · · · ∧ dxjn−p

Consider R
3 with the Euclidean metric, show that,

∗dz = dx ∧ dy

Problem 3

(5pts) Given vector fields A = (a, b, c) and B = (f, g, h) recall the work-form mapping,
ωA = adx + bdy + cdz and the flux-form mapping ΦA = ady ∧ dz + bdz ∧ dx + cdx ∧ dy. Show

ωA ∧ ωB = ΦA×B

where A × B denotes the cross-product of A with B.
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Problem 4

(20pts) Let f : R
3 → R be a smooth function and let F = (F1, F2, F3) and G = (G1, G2, G3) be

smooth vector fields on R
3. You may assume the identities

dxi
∧ dxj

∧ dxk = εijkdx ∧ dy ∧ dz εijkεmjk = 2δim

these are useful for (ii.) below. Also you might save some writing using the more efficient statements
of the work and flux form mappings,

ωF = Fidxi ΦG =
1

2
εijkGidxj

∧ dxk

Show

(i.) df = ω∇f

(ii.) dΦG = (∇ · G)dx ∧ dy ∧ dz
(iii.) dωF = Φ∇×F

(iv.) d(dα) = 0 for any p-form α

Problem 5

(10pts) Given the Generalized Stoke’s Theorem
∫

M
dα =

∫

∂M
α plus the defintion of differential

form integration ( which you have memorized) it can be shown,
∫

C

ωF =

∫

C

F · dl

∫

S

ΦG =

∫

S

G · dA

∫

V

fdx ∧ dy ∧ dz =

∫ ∫ ∫

V

fdxdydz

Using the items given above prove the following statements

(i.)
∫

S
(∇× F ) · dA =

∫

∂S
F · dl

(ii.)
∫ ∫ ∫

V
(∇ · G)dxdydz =

∫

∂V
G · dA

for a curve C, a surface S and a volume V all consistently oriented subsets of R
3 and we assume

that the vector fields are smooth so all the derivatives listed above are well-behaved.

Problem 6

(5pts) Let us parametrize Minkowski space with (t, x, y, z) = (xµ), µ = 0, 1, 2, 3 as usual and the
standard metric for our course which has diag(η) = (−1, 1, 1, 1). Show that,

∗dt = −dx ∧ dy ∧ dz

The following table is for future use on problems beyond this point on the test,

∗1 = dt ∧ dx ∧ dy ∧ dz ∗(dt ∧ dx ∧ dy ∧ dz) = −1
∗(dx ∧ dy ∧ dz) = −dt ∗dt = −dx ∧ dy ∧ dz
∗(dt ∧ dy ∧ dz) = −dx ∗dx = −dy ∧ dz ∧ dt
∗(dt ∧ dz ∧ dx) = −dy ∗dy = −dz ∧ dx ∧ dt
∗(dt ∧ dx ∧ dy) = −dz ∗dz = −dx ∧ dy ∧ dt
∗(dz ∧ dt) = dx ∧ dy ∗(dx ∧ dy) = −dz ∧ dt
∗(dx ∧ dt) = dy ∧ dz ∗(dy ∧ dz) = −dx ∧ dt
∗(dy ∧ dt) = dz ∧ dx ∗(dz ∧ dx) = −dy ∧ dt
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Problem 7

(10pts) Define J = −ρdt + J1dx + J2dy + J3dz. Show

(i.) ∗J = ρdx ∧ dy ∧ dz − ΦJ ∧ dt
(ii.) d(∗F ) = ∗J =⇒ d ∗ J = 0.

please use the table to do (i.).

Problem 8

( and now for something completely different...)
(10pts) For an arbitrary p-form α and q-form β is it true or false that

(i.) d(∗α) = ∗(dα)
(ii.) ∗(α ∧ β) = ∗α ∧ ∗β
(iii.) α ∧ β = −β ∧ α

explain your reasoning, if false give a counter-example.

Problem 9

(5pts) Given that F = ωE ∧ dt + ΦB use the table to show that,

∗F = −ωB ∧ dt + ΦE

Problem 10

(25pts) Recall that Maxwell’s equations are,

Gauss Law ∇ · E = ρ/εo

Ampere’s Law ∇× B = µoJ + µoεo
∂E
∂t

Faradays Law ∇× E = −∂B
∂t

no magnetic monopoles ∇ · B = 0

(1)

Show that Maxwell’s equations are the same as the following differential form equations,

dF = 0 d(∗F ) = µo ∗ J
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Bonus I: What color is Superman’s underwear ?

Bonus II: Suppose that the one-form potential is

A =
1

r(z − r)
(xdy − ydx).

Show that,

A = −(1 + cos(θ))dφ

where (r, θ, φ) are spherical coordinates

x = r cos(φ) sin(θ) y = r sin(φ) sin(θ) z = r cos(θ).

Calculate dA, would this satisfy a sort of generalized Maxwell’s equations ? What sort of field
does this potential represent ? Is this potential only singular where the field is singular ( which is
typical of where the actual charge resides, you may assume that the charge resides where the fields
are singular think about the Coulomb field for example it is only infinite at the origin where the
charge is ), or is the potential also singular at regions where there is no charge ? What effect does
the gauge transformation A′ = A + dφ have on the singularity in the potential ?. (notice φ itself is
ill-defined on z-axis so this in a ”singular gauge transformation”). You can show

A′ = (1 − cos(θ))dφ

Argue that the singularity in A moved somewhere else in A′. The ultimate outcome of these
observations is we cannot define global gauge potentials for the type of field encountered here, in
fact one needs the construction of the principle fiber bundle to give a good mathematical account
of what is going on.
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