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Mathematical Models in Physics, Exam I, October 3, 2006

Do all of your work on your own paper, please leave white space between problems. Notice that in
each problem I have used bold to draw your attention to what I want you to show.

Problem 1

(12pts) Define the following,

(a.) rigid motion on R®

(b.) Euclidean structure on a set S

(c.) observer on S

(d.) inertial observer on S

(e.) Minkowski metric on R?

(f.) Spacelike, lightlike, and timelike vectors in R*

Problem 2

(15 pts) Recall that €uemnk = Gimbjn — Simbin. Let E = Fie; be a vector field that has smooth

components, and let V = ¢;0; so that we denote,
a
V- -F= &Ei V x .E = Ekﬁ,-jkaiEj vEE = BiﬂiE where 3,' = E-'E‘-

Show that the following identity holds

Vx(VxE)=V(V-E) - VE

Problem 3
(15 pts) Maxwell’s equations in free space in the absence of source charges and currents are,

vXE=—§gB vXB:MﬂEalﬂtE

where u,, €, are constants. Show that,

PE
sz = ﬂﬂﬁgﬁ

Problem 4

(20 pts) Suppose that we have an inertial system of coordinates (f,z) and that there is another
frame of reference (7, Z) that moves with constant speed v in positive x-direction. Recall that we
argued that due to Einstein'’s first postulate we can relate the coordinates of the two frames of
reference as follows,

Z =a(x—ut)

x = a(Z + vt) d @)

where a is a yet undetermined constant. As usual let ¢ = 1 so that 8 = v. Consider the trajectory of
a light beam in both systems. Use the notation ¢(t) for the position of the light according to (¢, x)




and 9(f) for the position of the light according to (£,7). We can relate the trajectories according
to what we learned from the 1st postulate,

B(t) = a(1h(t) +vi) P(t) = a(g(t) )
By Einstein’s 2nd postulate we know that the speed of light is same in both frames,
d d
Lom)=1  Zed=1

By calculus we know that,

dy di dpdt  dEdt

d d di
WOl === ZBOl=57 ZF=!

Use what is given above to derive the following equations,

where v = 1/4/1 — 2.
Problem 5

(20 pts) Let (S, £) be a Newtonian space. Let X,Y : I — £ be inertial observers then we proved
that they are related by

V=AX+tv+w
for fixed A € SO(3), and v, w € R3. Consider some particle with trajectory 7 : I — S. Show that
if the acceleration of v with respect to X is zero then the acceleration of v with respect to Y is
likewise zero; that is show ax =0 = ay =0.

Problem 6

(10pts) Let L : R® — R? be an orthogonal transformation, furthermore let A € R**? be its matrix;
L(z) = Az. Show that ATA=I.

Problem 7

(10pts) Let L : R* — R be a Lorentz transformation, furthermore let B € R*** be its matrix;
L(z) = Bz. Recall we denoted the matrix of the Minkowski metric by 7 so that < z,y >= z"ny
for all z,y € RY. Show that BTypB =1,.

Bonus: if we define SO(1,3) = {B € R*™* | BTyB = n} then show that this a group and that
there is a homomorphism of SO(3) into this group.
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