Same rules as Mission 1. Enjoy,

- **Problem 91** Show the cardinality of [0,1) and (2,3) are equal in two ways:
 - (a.) by constructing an explicit bijection from [0,1) to (2,3)
 - (b.) Using the CSB theorem
- **Problem 92** Find an explicit bijection from [0,1) to $S_1 = \{z \in \mathbb{C} \mid |z| = 1\}$.
- **Problem 93** Let A and B be sets. Prove that if A is finite then $A \cap B$ is finite.
- **Problem 94** Assume the continuum hypothesis is true. Order the cardinalities of the following sets in order from smallest to largest.

$$\mathbb{Q}, \ \mathbb{N}, \ \mathcal{P}(\mathcal{P}(\mathbb{Z})), \ 3\mathbb{Z} + 1, \ \mathcal{P}(2\mathbb{N}), \ \mathcal{P}([0,1]), \ \sin^{-1}\{0\},$$

$$\cosh^{-1}\{0\}, \ \cosh^{-1}\{2\}, \ \mathbb{N}^n, \mathbb{C}, \mathcal{P}(\mathcal{P}\{1,2\}), \mathbb{N}_{47}$$

and S where
$$S = \{(x, y) \in \mathbb{Q}^2 | x^2 + y^2 \}$$

- **Problem 95** Prove $\lim_{x\to 1} (3x^3 + 20x^2 + 10x + 14) = 47$ via the $\varepsilon\delta$ definition of the limit.
- **Problem 96** Prove $\lim_{x\to a} \left(\frac{1}{9+x^2}\right) = \frac{1}{9+a^2}$ via the $\varepsilon\delta$ definition of the limit.
- **Problem 97** Consider $f(x) = \frac{1}{x^2 + 6x + 9} \frac{1}{x^2}$. Show $f(x) = O\left(\frac{1}{x^3}\right)$ as $x \to \infty$.
- **Problem 98** Consider the sequence $a_n = \frac{n}{1+n}$ for $n \in \mathbb{N}$. Prove $a_n \to 1$ as $n \to \infty$ from the definition of sequential limit.
- **Problem 99** Let $a_n = \ln(n+2)$. Prove $a_n \to \infty$ as $n \to \infty$ definition of sequential limit...
- **Problem 100** An open subset of \mathbb{R} is defined to be $U \subseteq \mathbb{R}$ for which every point in U is an **interior point**. In particular, $p \in U$ is interior iff there exists $\varepsilon > 0$ for which $B_{\varepsilon}(p) \subseteq U$ where $B_{\varepsilon}(p) = \{x \in \mathbb{R} \mid |x p| < \varepsilon\}$. Suppose $A, B \subseteq \mathbb{R}$ are nonempty sets. Further, suppose $f: A \to B$ is continuous. Prove that the inverse image under f of an open set is an open set. That is, given open set $V \subseteq \mathbb{R}$, prove $f^{-1}(V)$ is an open set.