Working together is encouraged, share ideas not calculations. Explain your steps. This sheet must be printed and attached to your assignment as a cover sheet. The calculations and answers should be written neatly on one-side of paper which is attached and neatly stapled in the upper left corner. No fuzzies thanks. Box your answers where appropriate. Please do not fold. Thanks!

- **Problem 21** Let $a, b, c \in \mathbb{R}$ with $a \neq 0$. Prove $ax^2 + bx + c = 0$ has a unique solution iff $b^2 4ac = 0$. Your proof should not use the quadratic formula. Rather, your proof is essentially the derivation of the quadratic formula.
- **Problem 22** Write the set $\{x \in \mathbb{R} \mid x^5 16x > 0\}$ as the union of intervals of real numbers. Be sure to justify your answer using an appropriate sign-chart and theory from calculus.
- **Problem 23** Write the set $\{x \in \mathbb{R} \mid \frac{x^2 3x^2 1}{x^2 + 8x + 30} \leq 0\}$ as the union of intervals of real numbers. Be sure to justify your answer using an appropriate an sign-chart and theory from calculus.
- **Problem 24** Prove $a \in \mathbb{Z}$ is odd iff there exists $j \in \mathbb{Z}$ for which a = 2j + 3.
- **Problem 25** Prove the sum of three consecutive integers is divisible by 3.
- **Problem 26** Prove: if x^2 is an even integer then x is an even integer.
- **Problem 27** Prove: there does not exist a smallest, positive rational number.
- **Problem 28** Prove: the sum of a rational and irrational number is irrational.
- **Problem 29** Prove: There exist two positive irrational numbers a, b such that a^b is rational.
- **Problem 30** Let A, B be sets. Prove: $A \subseteq B$ iff $A \cap B = A$.