MATH 200 MISSION 5: INDUCTION

Working together is encouraged, share ideas not calculations. Explain your steps. This sheet must be printed and attached to your assignment as a cover sheet. The calculations and answers should be written neatly on one-side of paper which is attached and neatly stapled in the upper left corner. No fuzzies thanks. Box your answers where appropriate. Please do not fold. Thanks!

Problem 41 Prove
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$
 for each $n \in \mathbb{N}$.

- **Problem 42** Prove $4n < 2^n$ for all integers $n \ge 5$.
- **Problem 43** Prove the sum of the first n-odd numbers is n^2 .
- **Problem 44** Every power of 13 can be written as a sum of two squares.
- **Problem 45** Prove the sum of the interior angles of an n-sided convex polygon¹ is $(n-2)\pi$ for all $n \in \mathbb{N}$ with $n \geq 3$.
- **Problem 46** Every positive integer n can be written as a sum of distinct nonnegative integer powers of two.
- Problem 47 Some related induction proofs,

(a.) Prove
$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2$$
.

- **(b.)** Suppose a sequence of real numbers a_k satisfies $\sum_{k=1}^n a_k^3 = \left(\sum_{k=1}^n a_k\right)^2$. Prove, by induction on n, that necessarily $a_k = k$ for all $k \in \mathbb{N}$.
- **Problem 48** Let $A_i, B_{ij} \in \mathbb{R}$ for $i, j \in \mathbb{N}$. Prove $\sum_{i=1}^n \sum_{j=1}^m A_i B_{ij} = \sum_{i=1}^n A_i \sum_{j=1}^m B_{ij}$.

Problem 49 Suppose f and g are smooth functions on \mathbb{R} . Prove for any $n \in \mathbb{N}$,

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}.$$

Problem 50 Let $\prod_{i=1}^{1} a_i = a_1$ and recursively define $\prod_{i=1}^{n+1} a_i = a_{n+1} \prod_{i=1}^{n} a_i$ for all $n \in \mathbb{N}$. Let f_i be a positive differentiable function. Prove, for $n \in \mathbb{N}$,

$$\frac{d}{dx} \prod_{i=1}^{n} f_i = \sum_{k=1}^{n} \frac{df_k}{dx} \frac{1}{f_k} \prod_{i=1}^{n} f_i.$$

¹a convex polygon is one for which any line-segment connecting two points on the polygon is contained within the polygon