Working together is encouraged, share ideas not calculations. Explain your steps. This sheet must be printed and attached to your assignment as a cover sheet. The calculations and answers should be written neatly on one-side of paper which is attached and neatly stapled in the upper left corner. No fuzzies thanks. Box your answers where appropriate. Please do not fold. Thanks!

- **Problem 51** We defined the imaginary exponential as $e^{i\theta} = \cos \theta + i \sin \theta$ for $\theta \in \mathbb{R}$. Prove that $e^{i\theta}e^{i\beta} = e^{i(\theta+\beta)}$ is true for all $\theta, \beta \in \mathbb{R}$. You will need to cite two results from trigonometry. Continuing, show $(e^{i\theta})^n = e^{in\theta}$ for all $n \in \mathbb{N}$. Also, what identities does this identity yield in n = 2 case and n = 6 cases? (use binomial theorem to expand)
- **Problem 52** For any $x \in \mathbb{R}$ and $n \in \mathbb{N}$, $|\sin(nx)| \le n|\sin(x)|$.
- **Problem 53** Let $R = \{(1,2), (1,3), (2,3), (2,4)\}$ and $S = \{(4,3), (4,2), (3,2), (3,1)\}.$
 - (a.) Find $R \circ S$ and $S \circ R$
 - **(b.)** Find R^{-1} and S^{-1} .
 - (c.) Verify $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.
- **Problem 54** Graph each relation below and find Dom(R) and Rng(R).
 - (a.) $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \text{ or } x^2 + 4x + y^2 = 0\}$
 - **(b.)** $R = \{(x, y) \in \mathbb{Z}^2 \mid x^2 = y\}$
 - (c.) $R = \{(x, n) \in \mathbb{R} \times \mathbb{N} \mid \cos(x) = n\}$
- **Problem 55** Let $x, y \in \mathbb{R}$ and define $x \sim y$ iff xy > 0 or x = y = 0. If \sim is an equivalence relation then find the partition of \mathbb{R} to which it corresponds. Otherwise, show \sim is not an equivalence relation on \mathbb{R} .
- **Problem 56** Let A be a set and suppose R is an equivalence relation on A. Prove the following: If $x, y \in A$ then $\sim (xRy)$ iff [x] and [y] are disjoint.
- **Problem 57** Let $S = \{f : \mathbb{R} \to \mathbb{R} \mid (\forall x)(f''(x) \in \mathbb{R})\}$. Define $f \sim g$ iff f''(x) = g''(x) for all $x \in \mathbb{R}$. Prove \sim is an equivalence relation on S. Find every possible representative of the equivalence class [0]. Characterize the equivalence classes of \sim .
- **Problem 58** Find all equivalence relations on the set $\{1, 2, 3, 4\}$.
- **Problem 59** Let $S = \{(a, b) \in \mathbb{Z}^2 \mid b \neq 0\}$. Let $(a, b), (c, d) \in S$ and define $(a, b) \sim (c, d)$ iff ad bc = 0.
 - (a.) show \sim is an equivalence relation on S,
 - **(b.)** show [(ka, kb)] = [(a, b)] for all $k \in \mathbb{N}$.
- **Problem 60** Let $x, y \in \mathbb{R}$ then define $x \sim y$ iff $y x = 2\pi k$ for some $k \in \mathbb{Z}$. Prove \sim is an equivalence relation.