Same instructions as before.

- **Problem 61** Let R_1 and R_2 be equivalence relations on a set A.
 - (a.) Show $R_1 \cap R_2$ is an equivalence relation.
 - **(b.)** Show $R_1 \cup R_2$ need not be an equivalence relation.
- **Problem 62** Let X be a set and suppose $\mathcal{P}(X)$ is the power set of X. Let $U, V \in \mathcal{P}(X)$ then U R V iff $U \subseteq V$ and $U \neq V$. Prove R defines an irreflexive partial ordering. Also, explain why R is not an irreflexive total ordering.
- **Problem 63** Use the Euclidean algorithm to find $a, b \in \mathbb{Z}$ for which ax + by = gcd(x, y) given that x = 517 and y = 141.
- **Problem 64** Consider \mathbb{Z}_{323} . Find the multiplicative inverse of [x] in \mathbb{Z}_{323} if possible, if not show that there exists $[y] \in \mathbb{Z}_{323}$ for which [z][y] = [0] (this means [x] is a **zero divisor**). Please use the Euclidean algorithm to aid your analysis where appropriate.
 - (a.) x = 322
 - **(b.)** x = 104
 - (c.) x = 10
- **Problem 65** Simplify [123456789] in \mathbb{Z}_9 . (no calculator allowed)
- **Problem 66** Which digits must we substitute for a and b in 30a0b03 so that the resulting integer is divisible by 13?
- **Problem 67** Prove $2^n + 6 \cdot 9^n$ is always divisible by 7 for any $n \in \mathbb{N}$.
- **Problem 68** Suppose $m \neq 0$ and $a, b \in \mathbb{Z}$. Prove $ma \mid mb$ iff $a \mid b$.
- **Problem 69** Show 15 | $(4^{2n+1} 7^{4n-2})$ for all $n \in \mathbb{N}$. *Hint:* 15 = 3 $\dot{5}$.
- **Problem 70** Find the last digits of the following numbers:
 - (a.) 4^{100}
 - **(b.)** 2006^3
 - (c.) 923^{2006}
 - (d.) 7^{728}
 - (e.) 9^{1234}