Same instructions as before.

Problem 71 For how many positive integral values of $x \le 100$ is $3^x - x^2$ divisible by 5 ?

- **Problem 72** Let $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ with arithmetic modulo 10. If $x \in \mathbb{Z}_n$ then we define the **additive order** of x to be the smallest k for which $k \cdot x = 0$ where $k \cdot x = \sum_{i=1}^k x$. The **multiplicative order** of x is the smallest $k \in \mathbb{Z}_{\geq 0}$ for which $x^k = 1$ if such k exists.
 - (a.) calculate the additive order of each number in \mathbb{Z}_{10}
 - (b.) for appropriate numbers, calculate the multiplicative order of each number in \mathbb{Z}_{10}
 - (c.) explain the relation between the previous parts, which numbers have multiplicative orders which are defined, which do not ?
- **Problem 73** Find the domain of each relation given below and determine if f is a function.
 - (a.) Let $f = \{(x, y) \in \mathbb{N}^2 \mid y^2 = x\}$
 - **(b.)** Let $f = \{(x, y) \in \mathbb{Z}^2 \mid y^2 = x\}$
- **Problem 74** Suppose x is a real variable. Let $f(x) = \ln(x^2 + 8x + 10)$
 - (a.) find dom(f).

- (b.) prove or disprove f is one-to-one
- **Problem 75** Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x,y) = (x+y,2x-y) for $(x,y) \in \mathbb{R}^2$
 - (a.) prove or disprove f is onto
- (b.) prove or disprove f is one-to-one
- **Problem 76** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x}{x-3}$ for $x \neq 3$ and f(3) = 1.
 - (a.) prove or disprove f is onto
- **(b.)** prove or disprove f is one-to-one
- **Problem 77** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 3 + 10^{3x^2 1}$ for $x \in \mathbb{R}$.
 - (a.) prove or disprove f is onto
- (b.) prove or disprove f is one-to-one
- **Problem 78** Let $f: \mathbb{Z}_n \to \mathbb{Z}_m$ be defined by $f([x]_n) = 3[x+1]_m$.
 - (a.) let n = 10 and m = 5, prove or disprove f is a function
 - **(b.)** let n = 4 and m = 8, prove or disprove f is a function
- **Problem 79** Let A, B, C be nonempty sets. Prove: If $f: A \to B$ and $g: B \to C$ are functions such that $g \circ f$ is injective then f is injective.
- **Problem 80** Let A, B_1, B_2 be nonempty sets. Suppose $f_1 : A \to B_1$ and $f_2 : A \to B_2$ are functions. We define $f = f_1 \times f_2 : A \to B \times C$ by $f(x) = (f_1(x), f_2(x))$ for all $x \in A$.
 - (a.) Prove or disprove: $f = f_1 \times f_2$ is a function
 - (b.) Prove or disprove: if f_1 or f_2 is injective then $f_1 \times f_2$ is injective
 - (c.) Prove or disprove: if f_1 and f_2 is onto then $f_1 \times f_2$ is onto.