Required Documents and Files:

(I.) Matlab .m file with clearly labeled sections and commented code.
(II.) Report pdf which answers questions posed in this project with a combination of complete sentences and claims which are supported by the Matlab file.

Philosophy of Project: use built-in Matlab commands. No need to reinvent the wheel. I am fairly sure there exist Matlab commands to complete most of the tasks I ask below. I am not here to tell you which commands to use, but I am happy to explain any unclear notation in the problem set-up. I do expect you use Matlab to calculate the bulk of what is asked. To be clear, I will not give much partial credit if you were to foolishly attempt these via direct pen and paper calculation (except where I explicitly say use "pen and paper")

Problem 1: For $n=2,3,4,5,6,7,8$:
(a.) Create an $n \times n$ matrix M using a random matrix generating command in Matlab.
(b.) Calculate $A=M^{T} M$.
(c.) Find the eigenvalues of A.
(d.) Find an orthonormal eigenbasis for A.
(e.) Explain what sort of set is defined by the quadratic equation $x^{T} A x=1$ where $x=\left(x_{1}, \ldots, x_{n}\right)$.
(f.) Calculate $e^{t A}$
(g.) Solve $\frac{d x}{d t}=A x$ given that $x(0)=(1,2,3, \ldots, n)$.

Problem 2: Create invertible $n \times n$ matrices with determinant one $n=2,3,4,5,6,7,8$.

