Required Documents and Files:

(I.) Matlab .m file with clearly labeled sections and commented code.
(II.) Report pdf which answers questions posed in this project with a combination of complete sentences and claims which are supported by the Matlab file.

Philosophy of Project: use built-in Matlab commands. No need to reinvent the wheel. I am fairly sure there exist Matlab commands to complete most of the tasks I ask below. I am not here to tell you which commands to use, but I am happy to explain any unclear notation in the problem set-up. I do expect you use Matlab to calculate the bulk of what is asked. To be clear, I will not give much partial credit if you were to foolishly attempt these via direct pen and paper calculation (except where I explicitly say use "pen and paper")

Problem 1: Orthonormalize the following sets of vectors via the Gram-Schmidt algorithm:
(I.) $S=\{(1,2,2,0,1),(1,2,2,7,1),(0,0,2,4,0),(0,0,0,1,0)\}$
(II.) $T_{4}=\left\{e_{1}+2 e_{2}+\cdots+i e_{i} \mid 1 \leq i \leq n-1\right\} \subset \mathbb{R}^{n}$ for $n=4$,
(III.) $T_{8}=\left\{e_{1}+2 e_{2}+\cdots+i e_{i} \mid 1 \leq i \leq n-1\right\} \subset \mathbb{R}^{n}$ for $n=8$
(IV.) $U_{5}=\left\{\cos (\pi i) e_{i}+2^{i} e_{i+1} \mid 1 \leq i \leq n-1\right\} \subset \mathbb{R}^{n}$ for $n=5$
(V.) $U_{10}=\left\{\cos (\pi i) e_{i}+2^{i} e_{i+1} \mid 1 \leq i \leq n-1\right\} \subset \mathbb{R}^{n}$ for $n=10$

Remark: if any of these sets are not LI please let me know so I can give additional instructions. Please use the labels I. II. III. IV. and V. in what follows as appropriate.

Problem 2: Let $\left\{u_{1}, \ldots, u_{n-1}\right\}$ denote the orthonormalized set of vectors found in a particular case of the previous problem. Find a vector $u_{n} \in \mathbb{R}^{n}$ which makes $\left\{u_{1}, \ldots, u_{n-1}, u_{n}\right\}$ an orthonormal basis. Do this for each case of the previous problem.

Problem 3: Let $\beta=\left\{u_{1}, \ldots, u_{n-1}, u_{n}\right\}$ be an orthonormal basis for \mathbb{R}^{n} and define

$$
B=2 u_{1} u_{1}^{T}+2 u_{2} u_{2}^{T}+\cdots+2 u_{n} u_{n}^{T}+u_{1} u_{2}^{T}+u_{2} u_{3}^{T}+\cdots+u_{n-1} u_{n}^{T}
$$

(a.) Show by direct pen and paper calculation that β is a generalized eigenbasis for B. In particular, show that β is a n-chain eigenvalue $\lambda=2$. In particular, show u_{n} is a generalized eigenvector of order n with eigenvalue $\lambda=2$.
(b.) Find generalized eigenvectors for B via Matlab for B constructed for the orthonormal basis you constructed in Problem 2. Hopefully these vectors are precisely the basis you used to construct B.
(c.) For each case, calculate $[\beta]^{-1} B[\beta]$ and comment on the form of the matrix.
(d.) For each case, calculate $e^{t B}$ and verify the identity $\operatorname{det}\left(e^{t B}\right)=\exp (\operatorname{trace}(t B))$
(e.) For each case, solve $\frac{d x}{d t}=B x$ given $x(0)=(1,2, \ldots, n)$.

Problem 4: Use the basis from case III. to build a matrix M which has Jordan form

$$
J_{2}(2) \oplus J_{4}(3) \oplus J_{2}(6)
$$

check that $[\beta]^{-1} M[\beta]=J_{2}(2) \oplus J_{4}(3) \oplus J_{2}(6)$.
Problem 5: Verify the Cayley Hamilton Theorem for each B constructed in Problem 3.

