Show your work and box answers. Once complete, please staple in upper left corner. Thanks.

Suggested Reading You may find the following helpful resources beyond lecture,

- (a.) Chapters 2, 3 and 4 of my lecture notes for Math 221
- **Problem 16:** Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 3 & 0 \end{bmatrix}$. Calculate AB BA. Do A and B commute?
- **Problem 17:** Let $v = [1, 2, 3, 4] \in \mathbb{R}^{1 \times 4}$ and $w = (5, 6, 7, 8) = \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} \in \mathbb{R}^{4 \times 1}$. Calculate vw and wv.
- **Problem 18:** A matrix is said to be **antisymmetric** if $A^T = -A$. In terms of components, that means $A_{ji} = -A_{ij}$ for all i, j. Consider the 3×3 matrix $A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$. If $\operatorname{Col}_1(A) = \begin{bmatrix} 0 \\ 2 \\ 7 \end{bmatrix}$ and $\operatorname{Row}_3(A) = [7, 3, 0]$ then find A.
- **Problem 19:** Let $N = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Calculate N^2 and N^3 and show $N^k = 0$ for $k \ge 4$.
- **Problem 20:** Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \end{bmatrix}$ and $M = \begin{bmatrix} 1 & 0 \\ 3 & -1 \\ 4 & 1 \\ 5 & 2 \end{bmatrix}$. If possible calculate the matrix quantities

below. If not, explain why such a calculation does not fall under our definition of matrix addition or multiplication.

- (a) A + M
- (b) A^2
- (c) AM
- (d) MA
- (e) $AA^T + 2MM^T$
- (f) $A^T A + 2M^T M$
- **Problem 21:** Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ a & b & c & d \end{bmatrix}$ where a, b, c, d are constants. Let e_i denote the i-th standard basis vector for \mathbb{R}^4 where i = 1, 2, 3, 4. For example, $e_2 = (0, 1, 0, 0) \in \mathbb{R}^{4 \times 1} = \mathbb{R}^4$. Also,

let \bar{e}_j denote the *j*-th standard basis element for $\mathbb{R}^3 = \mathbb{R}^{3\times 1}$. For example, $\bar{e}_2 = (0, 1, 0)$. With this notation in mind, calculate:

- (a) Ae_2
- (b) $\bar{e}_3^T A$
- (c) $A[e_1|e_2]$
- (d) $\left[\begin{array}{c} \overline{e}_2^T \\ \overline{e}_3^T \end{array} \right] A$
- (e) $\bar{e}_3^T A e_2$
- **Problem 22:** Let $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ and $A = \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix}$. Solve AX = I where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is the 2×2 identity matrix. Does your solution also solve XA = I?
- **Problem 23:** Given $x = (x_1, x_2, x_3)$ and $A = \begin{bmatrix} 1 & 3 & -5 \\ 1 & 4 & -8 \\ -3 & -7 & 9 \end{bmatrix}$, solve Ax = 0 and express the solution in parametric vector form.
- **Problem 24:** Let $v_1 = (1, 2, 2)$ and $v_2 = (0, 1, -1)$.
 - (a.) what condition must be given for a, b, c for $(a, b, c) \in \text{span}(v_1, v_2)$?
 - (b.) what condition is needed for $\{v_1, v_2, (a, b, c)\}$ to by a linearly independent (LI) set?
- **Problem 25:** Solve the chemical reaction $B_2S_3 + H_2O \rightarrow H_3BO_3 + H_2S$ via linear algebra.
- **Problem 26:** Suppose Av = b and Aw = b for a given matrix A and column vector b. If $v \neq w$ then show that the columns of A are linearly dependent.
- **Problem 27:** Let $A = \begin{bmatrix} 1 & 2 & 3 \\ a & b & c \\ 3 & 2 & 1 \end{bmatrix}$ and $R_1 = \begin{bmatrix} a & b & c \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}$ and $R_2 = \begin{bmatrix} 1 & 2 & 3 \\ a & b & c \\ 2 & 0 & -2 \end{bmatrix}$. Notice both R_1 and R_2 are obtained by performing an elementary row operation on A. Find 3×3 matrices E_1 and E_2 for which $R_1 = E_1 A$ and $R_2 = E_2 A$.
- **Problem 28:** If $A \to R$ under a row-operation then there exists an elementary matrix E for which R = EA. Find elementary matrices E_1, E_2, \ldots, E_k for which $\operatorname{rref}(A) = E_k E_{k-1} \ldots E_2 E_1 A$ for
 - (a) k = 3 will suffice for $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \end{bmatrix}$
 - (b) k = 2 will suffice for $A = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 0 & 0 \end{bmatrix}$

Problem 29: We defined the matrix product of $A \in \mathbb{R}^{m \times p}$ with $B \in \mathbb{R}^{p \times n}$ by $(AB)_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$ for all $1 \leq i \leq m$ and $1 \leq j \leq n$. In the case m = n we note the matrix $AB \in \mathbb{R}^{n \times n}$. Let us define the **trace** of a square matrix M to be the sum of its diagonals. To be precise,

$$\operatorname{trace}(M) = \sum_{i=1}^{n} M_{ii}.$$

- (a) Let I be the $n \times n$ identity matrix. Calculate trace(I).
- (b) Suppose $A \in \mathbb{R}^{n \times p}$ and $B \in \mathbb{R}^{p \times n}$. Show trace(AB) = trace(BA).
- **Problem 30:** Let $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ -1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$. Use Matlab, to calculate $(AA^T)^{100}$ and $(A^TA)^{100}$.