Show your work and box answers. Once complete, please staple in upper left corner. Thanks.

- Suggested Reading You may find the following helpful resources beyond lecture,
 - (a.) Chapter 5 of my lecture notes for Math 221
- **Problem 46:** Calculate det(A) where $A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 2 \\ 5 & 3 & 1 \end{bmatrix}$
- **Problem 47:** Calculate det(B) where $B = \begin{bmatrix} 2 & 2 & 0 & 2 & 2 \\ 0 & 2 & 0 & -1 & 0 \\ 2 & 2 & 0 & 0 & 3 \\ 7 & 7 & 2 & 7 & 7 \\ 5 & 3 & 0 & 0 & 0 \end{bmatrix}$
- **Problem 48:** Let A, B be as given in the previous problems. If $M = \begin{bmatrix} 2A & 0 \\ \hline 0 & 3B \end{bmatrix}$ then calculate $\det(M)$ via application of properties of determinants given in the lecture notes and the results of the previous pair of problems.
- **Problem 49:** For which values of x is the matrix $M = \begin{bmatrix} x & 2 & 2 \\ 1 & 1 & 1 \\ 7 & 5 & 3 \end{bmatrix}$ invertible?
- **Problem 50:** Solve $\alpha x + 3y = 7$ and $5x \beta y = 6$ by Cramer's rule. Comment on needed conditions on α, β for the solution to exist.
- **Problem 51:** Let A be a matrix which is similar to $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. In other words, suppose there exists an invertible matrix P for which $B = P^{-1}AP$. Calculate $\det(A)$ and $\operatorname{trace}(A)$.
- Problem 52: Let $A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. Calculate $\det(A)$ using properties of the determinant

based on row-reductions. Almost certainly using Laplace's expansion by minors here is a really bad idea.

- **Problem 53:** Find the volume of the parallel piped with edges (1, 2, 3), (2, 3, 3), (-1, -2, 0).
- **Problem 54:** Let $A, B \in \mathbb{R}^{4 \times 4}$ and $\det(A) = -1$ and $\det(B) = 2$. Calculate,

- (a.) det(AB)
- **(b.)** $\det(B^5)$
- (c.) det(2A)
- (d.) $\det(A^T A)$
- (e.) $\det(B^{-1}AB)$
- **Problem 55:** Find y as a function of x given that $\det \begin{bmatrix} 1 & x & y \\ 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \end{bmatrix} = 0$. What two points are on the line? Does this make sense in terms of known properties of the determinant?
- **Problem 56:** Consider $\begin{cases} 2x_1 + x_2 + x_3 = 4 \\ -x_1 + 2x_3 = 2 \\ 3x_1 + x_2 + 3x_3 = -2 \end{cases}$. Solve this system via Cramer's rule.
- **Problem 57:** Is $(a, b, c) \in \text{span}\{(1, 2, 3), (0, 1, 1)\}$? Use determinants and the theory of linear algebra we have discussed to answer this question.
- **Problem 58:** Suppose you have a square matrix A for which the matrix equation $A^T J A = J$ holds for some invertible matrix J. Find the possible values for det(A).
- **Problem 59: The cross product:** For all $a, b \in \mathbb{R}^3$ we define

$$T(a,b) = \sum_{j=1}^{3} (\det[a|b|e_j]) e_j.$$

Show $a \cdot T(a, b) = 0$ and $b \cdot T(a, b) = 0$ and for any $c \in \mathbb{R}^3$ we have $T(a, b) \cdot c = \det[a|b|c]$.

Problem 60: A natural candidate for the cross product in \mathbb{R}^4 is given by extending the formula in the previous problem: for all $a, b, c \in \mathbb{R}^4$ we define

$$T(a,b,c) = \sum_{j=1}^{4} \left(\det[a|b|c|e_j] \right) e_j$$

Show: $a \cdot T(a, b, c) = 0$ and $b \cdot T(a, b, c) = 0$ and $c \cdot T(a, b, c) = 0$.

I should mention, the equations above tell us a, b, c are perpendicular to T(a, b, c) and we can prove that implies $\{a, b, c, T(a, b, c)\}$ is linearly independent provided $T(a, b, c) \neq 0$. In other words, if you want a fourth vector which is outside the span of $a, b, c \in \mathbb{R}^4$ then T(a, b, c) is a nice choice. It is the normal to the hypervolume spanned by a, b, c.