Math 307 Mission 2

Same instructions as Mission 1. Thanks!

Problem 21 Your signature below indicates you have:

- (a.) I read pages 43-65 of Stillwell's *Elements of Number Theory*: ______.
- (b.) I read Cook's handout on *Modular Arithmetic*: ______.
- **Problem 22** Let $a, b, c \in \mathbb{Z}$. **Prove:** if a|b and b|c then a|c.
- **Problem 23** Let $a, b, c \in \mathbb{Z}$. **Prove:** if a|b and c|d then ab|cd.
- **Problem 24** Convert $(89156)_{10}$ to base 8 notation.
- Problem 25 exercise 3.1.4 on page 45
- **Problem 26** exercise 3.2.1 on page 48
- **Problem 27** exercise 3.3.4 on page 51
- **Problem 28** exercise 3.4.3 on page 53
- **Problem 29** Define f(x) = 3x + 2 where $x \in \mathbb{Z}_4$ and $f(x) \in \mathbb{Z}_5$. Is f so defined a function?
- **Problem 30** Write the addition and multiplication tables for $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}.$
- **Problem 31** Explain why $H = \{\overline{1}, \overline{2}, \overline{3}\}$ does **not** form a group with respect to multiplication mod 4.
- **Problem 32** For which $a \in \mathbb{Z}$ is it the case that $\overline{4a+3} = \overline{6}$ in \mathbb{Z}_{12} ?
- **Problem 33** Find the remainder of 5^{10} divided by 19.
- **Problem 34** Find the final hexidecimal digit of $1! + 2! + 3! + 4! + 5! + 6! + \cdots + 1000!$.

 Useful reminder: Recall a hexidecimal number is a base 16 representation $n = a_o + a_1(16) + a_2(16)^2 + \cdots + a_k(16)^k$ where the hexidecimal digits $a_0, a_1, \ldots, a_k \in \{0, 1, \ldots, 15\}$. However, we use notation 10 = A, 11 = B, 12 = C, 13 = D, 14 = E and 15 = F to write such numbers. For example, AF = 10(16) + 15 = 175. To be more pedantic, $(AF)_{16} = (175)_{10}$.
- **Problem 35** How many zeros are there at the end of 200! in decimal notation?
- Problem 36 Show that the greatest common divisor of two even integers is even.
- **Problem 37** Prove or disprove: for any positive integer n the fraction $\frac{15n+4}{10n+3}$ is in lowest terms. For example, $\frac{3}{6}$ is not in lowest terms as $\frac{3}{6} = \frac{1}{2}$. A fraction in lowest terms cannot be further reduced as a single fraction. (of course, with egyptian fractions and continued fractions we have many other options, but that is beside the point here)
- **Problem 38 Prove by induction on k:** If p is prime and $p|a_1a_2...a_k$ then $p|a_i$ for at least one a_i .
- **Problem 39** Show that $\sqrt[3]{5}$ is irrational. Hint $1^3 = 1$ and $2^3 = 8$.
- **Problem 40** Show that if a positive integer m is not a perfect square, then \sqrt{m} is irrational.