Please show your work. Enjoy! There are at least 150pts to earn here.

Problem 1 If I is an ideal of \mathbb{Z} then I = (n) for some $n \in \mathbb{Z}$. This proves \mathbb{Z} is a principal ideal domain.

Problem 2 Consider $\alpha = 7/13$. Is α an algebraic number? Is α an algebraic integer. Briefly explain.

Problem 3 prove, if $1 \in I$ then I = R.

Problem 4 Show $\mathbb{Z}[\sqrt{-14}] = (2, 1 + \sqrt{-14})$

Problem 5 find the units in $\mathbb{Z}[\sqrt{-14}]$

Problem 7 Let R be a ring and I a nonzero proper ideal (proper meaning $I \neq R$). Define multiplications of cosets $I + a \in R/I$ by

$$(I+a)(I+b) = I + ab.$$

Show that this multiplication is well-defined. In particular, **show that:** if I + a = I + a' and I + b = I + b' then I + ab = I + a'b'.

Problem 8	Let R be integers of $\mathbb{Q}(\sqrt{d})$ where d is squarefree. If $z = a + b\sqrt{d}$ then we define $\bar{z} = a - b\sqrt{d}$.
	Likewise, if A is an ideal of R then the conjugate ideal $\bar{A} = \{\bar{z} \mid z \in A\}$. Prove:

(a) $\overline{zw} = \overline{z} \cdot \overline{w}$ for all $z, w \in R$. (here \cdot is the ring multiplication)

(b) for ideals A, B show $\overline{AB} = \overline{A} \cdot \overline{B}$ (here \cdot is the multiplication of ideals)

Problem 9 A new idea which is fun to study in a relaxed setting like a test is that of the **ideal norm**. In particular, for a nonzero ideal A we know $\bar{A}A = (k)$ for some $k \in \mathbb{Z}$ where without loss of generality we may suppose k > 0. Define the **ideal norm of** A by N(A) = k.

- (a) If $A = (\alpha)$ then show $N(A) = \text{norm}(\alpha)$.
- (b) If A,B are nonzero ideals then $\mathcal{N}(AB)=\mathcal{N}(A)\mathcal{N}(B)$
- (c) If $A \mid B$ then $N(A) \mid N(B)$

(d) an ideal whose norm is prime in \mathbb{Z} is a prime ideal.

Problem 10 Prove $(3 - \sqrt{-14})$ is prime in $\mathbb{Z}[\sqrt{-14}]$. Hint: 17 is prime.

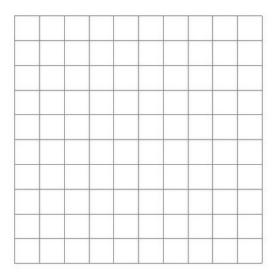
Problem 11 Show that $(3 - \sqrt{-14})$ is maximal in $\mathbb{Z}[\sqrt{-14}]$.

Problem 12 Mordell's Equation: to find integer solutions of $y^2 + 26 = x^3$ we can guess the simple solutions x = 3 and $y = \pm 1$. However, less trivial solutions may be found from factoring in $\mathbb{Z}[\sqrt{-26}]$. Conjecture:

$$x^{3} = y^{2} + 26 = (y - \sqrt{-26})(y + \sqrt{-26}) \implies y + \sqrt{-26} = (a + b\sqrt{-26})^{3}$$

for some $a, b \in \mathbb{Z}$. Derive two integer solutions from the above conjecture.

Problem 13 Let $R = \mathbb{Z}[i]$ and consider J = (1+2i). Show J is a lattice by finding $\alpha, \beta \in R$ for which $J = \{m\alpha + n\beta \mid m, n \in \mathbb{Z}\}$. Picture the ideal J and, with the help of your picture, describe the structure of R/J. In particular, find a representative for each distinct coset in R/J. (there are 5).



Challenge: are there zero divisors in R/J ? If not, can you find a finite field which is ring isomorphic to R/J ?

						_		
Problem 14	Recall the	equivalence	of the	following	properties	of an	ideal	P:

$$(1.) \ AB \subseteq P \ \Rightarrow \ A \subseteq P \ \text{or} \ B \subseteq P, \qquad \qquad (2.) \ ab \in P \ \Rightarrow \ a \in P \ \text{or} \ b \in P$$

Please prove just one direction of (1.) \Leftrightarrow (2.). (your choice)

Problem 15 Prove: every maximal ideal is prime.

Problem 16 Explain why every prime ideal is maximal in the integers of an imaginary quadratic field.