The solutions should be written neatly on lined or unlined paper with the work clearly labeled. Do not omit scratch work. I need to see all steps. Skipping details will result in a loss of credit. Thanks and enjoy.

Problem 1 [10pts] (like § 1.3 # 82) Notice that there are only a few possible forms for the rref of a 2×3 matrix:

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right], \left[\begin{array}{ccc} 1 & * & 0 \\ 0 & 0 & 1 \end{array}\right], \left[\begin{array}{ccc} 1 & * & * \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right], \left[\begin{array}{ccc} 0 & 1 & * \\ 0 & 0 & 0 \end{array}\right], \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]$$

where * denotes an arbitrary value. Use this notation to list out the possible forms of the rref of an arbitrary 4×2 matrix.

Problem 2 [10pts] Show that

$$A = \begin{bmatrix} 3 & 1 & -5 & 11 \\ 2 & 1 & -4 & 8 \\ 3 & 0 & -3 & 10 \end{bmatrix} \text{ has } rref(A) = \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Use the calculation above to

- (i.) find the general solution of Au = 0.
- (ii.) argue that 3x + y 5z = 11, 2x + y 4z = 8, 3x 3z = 10 has no solution.
- **Problem 3** [5pts] (\S 1.1 # 83) A system of linear equations is called **underdetermined** if there are less equations than variables. What can you say about the solution of an undetermined system of linear equations?
- **Problem 4** [15pts] (§ 1.1 # 84) An system of linear equations is called **overdetermined** if there are more equations than variables. Give examples of overdetermined systems of linear equations with
 - (i.) a unique solution,
 - (ii.) infinitely many solutions,
 - (iii.) no solutions.
- **Problem 5** [5pts] (§ 1.3 # 79) Prove that if $A \in \mathbb{R}^{m \times n}$ then Ax = 0 is a consistent system of equations.
- **Problem 6** [20pts] (§ 1.4 # 87,88) Let $c \in \mathbb{R}$. Claim: If $A \in \mathbb{R}^{m \times n}$ and $u, v \in \mathbb{R}^{n \times 1}$ are solutions to Ax = 0 then u + v and cu are solutions of Ax = 0. Prove or disprove by giving counter-examples.
- **Problem 7** [20pts] (§ 1.4 # 87,88) Let $c \in \mathbb{R}$. Claim: If $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{n \times 1}$ and $u, v \in \mathbb{R}^{n \times 1}$ are solutions to Ax = b then u + v and cu are solutions of Ax = b. Prove or disprove by giving counter-examples.
- **Problem 8** [10pts] (§ 1.4 # 48) Find a quadratic polynomial whose graph contains the points (-2, 33), (2, -1) and (3, -8).
- **Problem 9** [10pts] Find a cubic polynomial whose graph contains the points (1, 2), (2, 2), (3, 2) and (4, 2).

Problem 10 [15pts] (Anton §1.2 #24) Solve the following nonlinear system for x, y, z,

$$\frac{1}{x} + \frac{2}{y} - \frac{4}{z} = 1$$
$$\frac{2}{x} + \frac{3}{y} + \frac{8}{z} = 0$$
$$-\frac{1}{x} + \frac{9}{y} + \frac{10}{z} = 5.$$

Problem 11 [15pts] (Anton §1.2 #20) Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $0 \le \alpha \le 2\pi$, $0 \le \beta \le 2\pi$ and $0 \le \gamma \le \pi$. Solve

$$2\sin\alpha - \cos\beta + 3\tan\gamma = 3$$
$$4\sin\alpha + 2\cos\beta - 2\tan\gamma = 2$$
$$-\sin\alpha - 5\cos\beta + 5\tan\gamma = 9.$$

Problem 12 [10pts] Let $Z = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Recall that there are no real solutions of the equation $x^2 + 1 = 0$. The same is not true for matrices. Show that $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ solves $Z^2 + I = 0$. Let $a, b, c, d \in \mathbb{R}$ and define Z = aI + bJ and W = cI + dJ. Calculate ZW and interpret what this calculation represents.

Problem 13 [10pts] (§ 2.1 # 9 of Lay) Let $A = \begin{bmatrix} 2 & 5 \\ -3 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -5 \\ 3 & k \end{bmatrix}$. Which value of k makes AB = BA? Show your work.

Problem 14 [20pts] (Lay Chapter 2 supp. # 11) Suppose that $AB = \begin{bmatrix} 5 & 4 \\ -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 7 & 3 \\ 2 & 1 \end{bmatrix}$. Calculate A.

Problem 15 [30pts] Let $A \in \mathbb{R}^{n \times n}$ and $B, C \in \mathbb{R}^{n \times p}$. Prove that

- (i.) If AB = AC for all $A \in \mathbb{R}^{n \times n}$ then B = C,
- (ii.) If A is invertible and AB = AC then B = C,
- (iii.) There exists $A \neq 0$ such that AB = AC yet $B \neq C$.

Problem 16 [20pts] (Anton §1.5 #9b, c) Suppose $k_1, k_2, k_3, k_4, k \neq 0$. Find the inverse matrix of

$$A = \begin{bmatrix} 0 & 0 & 0 & k_1 \\ 0 & 0 & k_2 & 0 \\ 0 & k_3 & 0 & 0 \\ k_4 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} k & 0 & 0 & 0 \\ 1 & k & 0 & 0 \\ 0 & 1 & k & 0 \\ 0 & 0 & 1 & k \end{bmatrix}.$$

2

Problem 17 [5pts](§ 1.1 # 75) If B is a square matrix prove that $B + B^T$ is symmetric.

Problem 18 [20pts](§ 1.1 # 83) A **probability vector** \vec{p} is a vector with non-negative components that have a sum of one, in other words \vec{p} has the form

$$\vec{p} = \langle p_1, p_2, \dots, p_n \rangle$$
 such that $p_1 + p_2 + \dots + p_n = 1$ and $p_j \ge 0$ for all j .

Prove the following: If \vec{p} and \vec{q} are probability vectors and $a, b \in \mathbb{R}$ are non-negative scalars such that a + b = 1 then $a\vec{p} + b\vec{q}$ is a probability vector.

Problem 19 [20pts] (§ 1.2 # 69) A **stochastic matrix** is a square matrix whose columns are probability vectors. Let $A = \begin{bmatrix} .85 & .03 \\ .15 & .97 \end{bmatrix}$ be a stochastic matrix which models the migration of people to and from the city to the suburbs. In particular, if c_k denotes the number of people (in thousands) in the city in year k and s_k denotes the number of people (in thousands) living in the suburbs in year k then letting $X_k = [c_k, s_k]^T$ we can model the migration of people by the following matrix product:

$$X_{k+1} = AX_k$$
.

This model assumes the population stays constant and that there are only two places to live, the city or the suburbs. In addition, the model says that 15% of city people move to suburbs while only 3% of the suburb people move to the city. Suppose that $X_0 = [400, 300]^T$. Calculate the number of people living in the city and the number of people in suburbs after 1 year and then after 2 years.

Problem 20 [5pts] (§ 2.2 # 19 of Lay) Suppose $A, B, C \in \mathbb{R}^{n \times n}$ are invertible matrices. Solve $C^{-1}(A+X)B^{-1} = I$ for X.

Problem 21 [20pts] (§ 2.4 # 64) Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

- (a.) show that $A^2 3A + I = 0$,
- (b.) let B = 3I A and prove $B = A^{-1}$,

Problem 22 [20pts](§ 1.1 # 82 and § 2.1 # 65) The **trace** of a square matrix is defined as follows: let $A \in \mathbb{R}^{n \times n}$ then

$$trace(A) = \sum_{i=1}^{n} A_{ii} = A_{11} + A_{22} + \cdots + A_{nn}.$$

Prove the following statements are true for all $A, B \in \mathbb{R}^{n \times n}$, $C \in \mathbb{R}^{m \times n}$, $D \in \mathbb{R}^{n \times m}$ and $c \in \mathbb{R}$,

- (i.) trace(A + B) = trace(A) + trace(B)
- (ii.) trace(cA) = c trace(A)
- (iii.) $trace(A^T) = trace(A)$
- (iv.) trace(CD) = trace(DC)

Problem 23 [10pts] (§ 2.1 #s 9 of Lay) We define the **commutator** of A with B by [A, B] = AB - BA. Let $A, B \in \mathbb{R}^{n \times n}$ show that it is not possible for [A, B] = I.

- **Problem 24** [10pts] (§ 2.3 # 66) Suppose we are given a block-matrix $M = \begin{bmatrix} A & 0_{p \times q} \\ 0_{q \times p} & B \end{bmatrix}$ which is a $(p+q) \times (p+q)$ matrix with square blocks $A \in \mathbb{R}^{p \times p}$ and $B \in \mathbb{R}^{q \times q}$ and $0_{p \times q}, 0_{q \times p}$ denote zero matrices. Prove that M is invertible iff A and B are invertible.
- **Problem 25** [10pts] (§ 3.2 #s 69) Suppose $A \in \mathbb{R}^{n \times n}$ is invertible, prove that $det(A^{-1}) = 1/det(A)$.
- **Problem 26** [10pts] (§ 3.2 #s 72) A square matrix $A \in \mathbb{R}^{n \times n}$ is **nilpotent of order** k if for some smallest positive integer k the product $A^k = 0$. Prove that if $A \in \mathbb{R}^{n \times n}$ is nilpotent then det(A) = 0
- **Problem 27** [20pts] (§ 3.2 #s 74) A square matrix $A \in \mathbb{R}^{n \times n}$ is **skew-symmetric** if $A^T = -A$. Prove that if $n \in 2\mathbb{Z} + 1$ then det(A) = 0. What if $n \in 2\mathbb{Z}$? Explain.
- **Problem 28** [20pts] (§ 3.2 #s 75) The matrix $A = \begin{bmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{bmatrix}$ is an example of a **Vandermonde**

matrix. Calculate the determinant by performing elementary row operations to show that

$$det(A) = (b-a)(c-a)(c-b).$$

Problem 29 [20pts] Define a Vandermonde matrix V(t) as follows:

$$V(t) = \begin{bmatrix} 1 & t & t^2 & t^3 \\ 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \end{bmatrix}$$

This matrix provides us a convenient way of creating a cubic polynomial that passes through distinct zeros $(x_1,0)$, $(x_2,0)$, $(x_3,0)$. Define f(x) = det(V(x)) and explain why $f(x_1) = f(x_2) = f(x_3) = 0$. Based on an analogy to the preceding problem state an explicit formula for f(t).

- **Problem 30** [40pts] (§ 2.4 #s 84,86,87) If $A, B \in \mathbb{R}^{n \times n}$ then we say A, B are **similar matrices** iff there exists an invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $B = P^{-1}AP$, in such a case we say B is the similarity transform of A by P. Assume A, B are square matrices and prove the following claims:
 - (a.) Similarity transformation is an equivalence relation,
 - (b.) if A, B are invertible and A is similar to B then A^{-1} is similar to B^{-1} ,
 - (c.) if A is similar to B then A^T is similar to B^T .
 - (d.) if A is similar to B then det(A) = det(B)

Proofs to complete the lecture notes

Problem 31 [20pts] Prove the concatenation proposition 2.3.11:

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ then

 $AB = A[col_1(B)|col_2(B)| \cdots |col_p(B)] = [Acol_1(B)|Acol_2(B)| \cdots |Acol_p(B)].$

Problem 32 [25pts]Prove items 2, 5, 9, 10 and 11 from proposition 2.3.13.

If $A, B, C \in \mathbb{R}^{m \times n}$, $X, Y \in \mathbb{R}^{n \times p}$, $Z \in \mathbb{R}^{p \times q}$ and $c_1, c_2 \in \mathbb{R}$ then

- 1. (A+B) + C = A + (B+C),

- 2. (AX)Z = A(XZ), 3. A + B = B + A, 4. $c_1(A + B) = c_1A + c_2B$,
- 5. $(c_1 + c_2)A = c_1A + c_2A$,
- 6. $(c_1c_2)A = c_1(c_2A)$,
- 7. $(c_1 A)X = c_1(AX) = A(c_1 X) = (AX)c_1$,
- $9. I_m A = A = A I_n,$
- $10. \ A(X+Y) = AX + AY,$
- 11. $A(c_1X + c_2Y) = c_1AX + c_2AY$,
- 12. (A + B)X = AX + BX,

Problem 33 [20pts] Prove 1, 2, 4, and 5 of Proposition 2.9.3.

Let $A, B \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}$ then

- 1. $(A^{T})^{T} = A$ 2. $(AB)^{T} = B^{T}A^{T}$ 3. $(cA)^{T} = cA^{T}$ 4. $(A+B)^{T} = A^{T} + B^{T}$ 5. $(A^{T})^{-1} = (A^{-1})^{T}$.

Problem 34 [25pts] Prove the following proposition holds for all $k \in \mathbb{N}$.

Your proof should include a careful induction argument.

If $A_1, A_2, \ldots, A_k \in \mathbb{R}^{n \times n}$ are invertible then

$$(A_1 A_2 \cdots A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} \cdots A_2^{-1} A_1^{-1}$$