
Math 321: simultaneous diagonalizability n-dimensional geometry Bonus [47pts]

Each A-Rank problem here is worth 3pts. The Hokage-Rank is worth 20pts.

Bonus 14 (A-Rank) Insel, Spence and Friedberg §5.2#18 page 281

Bonus 15 (A-Rank) Insel, Spence and Friedberg §5.2#19 page 281

Bonus 16 (A-Rank) Insel, Spence and Friedberg §5.2#20 page 281

Bonus 17 (A-Rank) Insel, Spence and Friedberg §5.2#21 page 281

Bonus 18 (A-Rank) Insel, Spence and Friedberg §5.4#25 page 323

Bonus 19 (A-Rank) Insel, Spence and Friedberg §5.4#38 page 325

Bonus 20 (A-Rank) Insel, Spence and Friedberg §6.4#14 page 373

Bonus 21 (A-Rank) Insel, Spence and Friedberg §6.4#15 page 374

Bonus 22 (A-Rank) Insel, Spence and Friedberg §6.6#10 page 402

Bonus 23 (Hokage) Let πj : Rn → Rn be the projection defined by π(x) = x− (x • ej)ej for each x ∈ Rn

for j = 1, . . . , n. Suppose P is an (n− 1)-dimensional paralell-piped which is formed by the
convex-hull of v1, . . . , vn−1 ∈ Rn suspended at base-point p ∈ (0,∞)n;

P =

{
p+

n−1∑
j=1

αjvj

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}

Let n ∈ Rn be a unit-vector in {v1, · · · , vn−1}⊥. The (n−1)-area of P is given by area(P) =
|det[v1| · · · |vn−1|n]|. We can study the area of the shadows formed by P on the coordinate
hyperplanes. Let Pj = πj(P) define the shadow of P on the xj = 0 coordinate plane. Notice,

Pj =

{
πj(p) +

n−1∑
i=1

αiπj(vi)

∣∣∣∣ αj ∈ [0, 1] &
n−1∑
j=1

αj ≤ 1

}

which shows Pj is formed by the convex-hull πj(v1), . . . , πj(vn) of attached at basepoint πj(p).
It follows that the (n− 1)-area of the Pj can be calculated as follows:

area(Pj) = |det[πj(v1)| · · · |πj(vn−1)|ej]|.

since ej is perpendicular to Pj. In the case n = 2 the 1-dimensional paralell-piped is just a
line-segment. For example, if v1 = (1, 1) then (1/

√
2,−1/

√
2) is perpendicular to v1 and

det

[
1 1/

√
2

1 −1/
√
2

]
= −2/

√
2 = −

√
2 ⇒ area(P) =

√
2.

Of course, this is actually the length of the line-segment. Also, notice

area(P1)
2 + area(P2)

2 = 12 + 12 =
√
2
2
= area(P)2.



This is not suprising. However, perhaps the fact this generalizes to n-dimensions in the
following sense is not already known to you:

area(P1)
2 + area(P2)

2 + · · · area(Pn)
2 = area(P)2

Prove it. You might call this the generalized Pythagorean identity, I’m not sure its history
or formal name. That said, the formula I give for generalized area could just as well be
termed generalized volume. Also, you could define

v1 × v2 × · · · × vn−1 = det

 v1 | v2 | · · · | vn−1

e1
e2
...
en

 ∈ Rn

where we insist the determinant is calculated via the Laplace expansion by minors along the
last column. You can show v1 × v2 × · · · × vn−1 ∈ {v1, . . . , vn−1}⊥. But, if n is a unit-vector
which spans {v1, . . . , vn−1}⊥ then the (n − 1)-ry cross-product must be a vector parallel to
n and thus:

v1 × v2 × · · · × vn−1 = [(v1 × v2 × · · · × vn−1) •n]n

Note, n •n = 1 as we assumed n is unit-vector and we can show

(v1 × v2 × · · · × vn−1) •n = det[v1|v2| . . . |vn−1|n]

Notice this generalized cross-product is just an extension of the heurstic determinant com-
monly used in multivariate calculus to define the standard cross-product. In particular, the
following is equivalent to the column-based definition

v1 × v2 × · · · × vn−1 = det


e1 e2 · · · en

vT1
vT2
...

vTn−1


where we insist the determinant is calculated via the Laplace expansion by minors along the
first row. In any event, my point in this discussion is merely that we can calculate higher-
dimensional volumes with determinants and these go hand-in-hand with generalized tertiary
cross-products. In particular,

||v1 × v2 × · · · × vn−1|| = vol(P)

where P is formed by the convex hull of v1, . . . , vn−1. When n = 2 this gives vector length,
when n = 3 this is the familar result that the area of the parallelogram with sides A⃗, B⃗ is
just ||A⃗× B⃗||.


