MATH 321: REPRESENTATIONS OF ASSOCIATIVE ALGEBRAS BonNus [42pPTs]

Each problem here is worth 3pts. Nice presentation worth 3pts.
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BonuleetJ:[1 0

} and define W = {M € R**? | MJ = JM}.

(a.) show W is a subspace of R**?

(b.) Find a basis  for W and calculate H (Z 2 H in terms of a and b.
B

Bonus 2 We define hyperbolic numbers H = {z + jy | z,y € R} where j?> = 1 and we suppose
{1,7} are linearly independent (H = 1R & jR) . In particular, we add and multiply in the
natural fashion:

(a+bj)+(z+jy)=a+z+jb+y)

(a+bj)(z+ jy) = ax + by + j(ay + bx)

for all a + jb,z + jy € H. Scalar multiplication is a special case of the vector multiplication
in H; c(a+bj) = ca+ j(cb). Tt is straightforward to verify H forms a vector space over R.
Prove the following;:

(a.) V(z+jy) = { :; Z ] is a vector space isomorphism from # to W from Bonus 1.

(b.) (1) =1 and ¥ (zw) = ¥(2)¥(w) for all z,w € H
(c.) If z € H has 2! € H such that zz~' = 1 then W(z1) = (¥(2))""

(d.) Find all z € H for which z~! does not exist. Show that each such element z has nonzero
w € H for which zw = 0.

Remark: a vector space V' paired with a multiplication is called an algebra. For example, C is an
algebra since C is a vector space where we also have a natural method to multiply vectors. Likewise,
R™*™ or C™*™ form algebras with respect to the usual matrix multiplication. When given two algebras
it is interesting to ask if they are isomorphic as algebras. This requires they have the same linear
structure (which is the sense of isomorphism this course focuses primarily upon) and the multiplication
is preserved in the natural fashion. To be precise, if .4 has multiplication x and B has multiplication o
then ¥ : A — B is an algebra isomorphism if

U(z + cy) = V() + c¥(y), U(xxy)=TU(x)o¥(y)

for all x,y € A and ¢ € F. We also insist that when A has a multiplicative identity 14 and likewise

1g for B then ¥(14) = 1g. In the above problem, we see U(1) = [ (1) (1) } hence ¥ is an algebra

isomorphism of hyperbolic numbers and the subspace of 2 x 2 matrices of the special form [ z i } .
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The direct product algebra on A = R™ is defined by
(@15 @) * (Y, Yn) = (@191, - -, oY)
for all z,y € R™.

(a.) show the direct product algebra is a unital, associative algebra
(b.) which elements of A are invertible with respect to the given multiplication ?

(c.) find the matrix representation of A with respect to the standard basis

challenge: show H is isomorphic to R? with the direct product algebra and use this iso-
morphism to solve the quadratic equation in H: for b,c € H

224+ bz4c=0.

The direct product algebra on A = C" is defined by

(21, .-y 2n) * (w1, ..., wy,) = (z1w1, . . ., Zpwy)

for all z,w € C". Find the matrix representation of A with respect to the basis (8
B = {e1,ier, e,i€9, ... €, 10€,}.

The n-hyperbolic numbers H, = 1R @ jR & --- @ j° 'R are numbers of the form z =
T+ x9f +w35° + -+ 2,5 where j7 = 1. If 8= {1,5,5%,...,77 1} serves as the basis for
‘H,, then find the matrix representation of z.

If we visualize H3 as R3 then explain geometrically where the zero-divisors are found. Note,
7 is a zero divisor if there is a # 0 for which na = 0.

The n-complicated numbers C, = IR @ kR @ --- @ k" 'R are numbers of the form n =
Ty + ok + w3k? + - -+ 2, k"t where k" = —1. If 3 = {1,k,k? ..., k""'} serves as the basis
for C,, then find the matrix representation of 7.

Find an algebra isomorphism of C3 and H3. In addition, show 3 is isomorphic to B = C xR
where we define (z,z) * (w,y) = (2w, zy) for each (z,x), (w,y) € C x R.

challenge: solve the quadratic equation in Hs; given b, c € Hga, find all z € H3 for which

224bz4c=0.

Let A be an algebra of dimension n with basis {e,...,e,}. Suppose we define

n
_ k
eixej = E C’ijek
k=1

for appropriate structure constants ij € R. If v = >  x;e; then the length of z is

defined by ||z|| = /> i, (z;)?. Show that there exists M > 0 for which ||[vxw| < M|v]|||w]|
for all v,w € A. Also, find the smallest value possible for M which holds for the hyperbolic
numbers.



Bonus 12 Consider § = {1,e1,e2,e1 A es} serve to generate V' = span(f) as a real vector space of
dimension 4. I'll arrange the A products in a table:

1 e1 €9 e1 N\ ey

1 1 e1 €9 e1 N\ ey
€1 €1 0 e1 N\ ey 0
€9 € —e1 A es 0 0
eprNey| e Neg 0 0 0

Extend the table linearly as to define A : V' x V' — V as a unital associative multiplication.
Define the left multiplication with respect to the wedge product: £,(y) = A y. Then,

[€].8 = [[a(D]sl[la(er)]sl[la(e2)][laler A e2)]]
= [lz]sllz A er]sl[z A ealsllz Aer A eslg]

For example,

[Lei]s.p = [[ea]sller Aerlsller A ea]sllea A er A ea]g] = [[e1] 5[0][e1 A ea]s]0] =

o O = O
o O O O
_ o O O
o O OO

(a.) Complete my work by finding [Le,]s 3, [Le,nes |3, and the far more relaxing [L4]3.
(b.) Show [Le,]g,8[Le.]g,8 = [Leines)s,

Remark: The problem above shows how we can represent the wedge product in terms of matrix
multiplication. In particular, the wedge product on R? is easily implemented with 4 x 4 matrices.
Generally, we can follow much the same construction to build the wedge product algebra on R™ by
representing it on 2" x 2" matrices. That said, that’s not really how I think about the wedge product.



Bonus 13 The exterior algebra of R? is formed by the direct sum of k-forms for k = 0,1, 2, 3;
QRS = R EB AlRS EB AQR?’ @ A3R3.

In the previous problem you explored some properties of the isomorphisms w : R3 — A;R3
and ® : R® — A,R?. Hodge Duality exchanges a p-form for an (n — p)-form. We define
Hodge duality on R? as a linear map x € L(2R3) by the rules

*xWwy, = Py, x®, =w,, *xdvANdyNdz=1, *1=dxANdyANdz.

In this creative problem I want you to try to define Hodge duality for Euclidean four dimen-
sional space with coordinates t,z,y, z. We’'ll define

Wia,ape) = adt + Wape) = adt + adz + bdy + cdz

for each (o, a,b,c) € R*; that is, Wi, = adt + w, for all @« € R and v € R®. Note
W : R* — A{R* defines an isomorphism.

(a.) Find an isomorphism ¥ : R* — A3R* denoted by U((a,v)) = ¥ (4,

(b.) Give rules for * : A,R* — Ay, for p = 0,1,2,3,4 such that *Wiaw) = Yiaw and
*W(a) = Wiy It suffices to define * on the basis for p-forms as we may linear
extend from such rules. T'll do two whole cases for you: *1 = dt A dx N\ dy A dz and
xdt N dx N dy A dz = 1. Now you just need to explain how it works for p = 1,2, 3.

(c.) Tt is a quirk of three dimensions that dim(A;R?) = 3 = dim(A,R?). Once more, in four
dimensions W gives a natural isomorphism of vectors and one-forms. Discuss two-forms
verses three-forms in regard to isomorphism with four dimensional vectors.



