Your Printed name indicates you read Chapter 5 of the notes: _____

- **Problem 1** Friedberg, Insel and Spence 5th edition, $\S5.4\#2a, c, e$, page 320.
- Problem 2 Friedberg, Insel and Spence 5th edition, §5.4#6, page 320
- Problem 3 Friedberg, Insel and Spence 5th edition, §5.4#36, page 325
- **Problem 4** Friedberg, Insel and Spence 5th edition, §7.2#4a, b, page 503
- **Problem 5** Friedberg, Insel and Spence 5th edition, §7.2#5a, d, page 504
- Problem 6 Friedberg, Insel and Spence 5th edition, §7.3#3, page 515
- Problem 7 Friedberg, Insel and Spence 5th edition, §7.3#8, page 516
- **Problem 8** Let $A = \begin{bmatrix} -6 & -4 \\ 10 & 6 \end{bmatrix}$. Find the eigenvalues and eigenvectors of A. Is A diagonalizable as a real matrix? Is A diagonalizable as a complex matrix? Find the real Jordan form associated with A.
- **Problem 9** Let $A = \begin{bmatrix} 2 & 4 & -4 \\ -1 & 2 & -1 \\ 1 & 4 & -3 \end{bmatrix}$. Find the eigenvalues and eigenvectors of A. Is A diagonalizable as a real matrix? Is A diagonalizable as a complex matrix? Find the real Jordan form associated with A.
- **Problem 10** Let $A = \begin{bmatrix} -5 & 4 & 0 & -4 \\ -11 & 8 & -2 & -7 \\ 2 & -1 & 1 & 3 \\ -1 & 1 & -2 & 0 \end{bmatrix}$. You can check this matrix has eigenvalues of $\lambda = 1 \pm 2i$

repeated. In fact (and please, understand, I do **not** want you to actually find these vectors) there exist nonzero vectors $v_1 = a_1 + ib_1$ and $v_2 = a_2 + ib_2$ such that:

$$(A - (1+2i)I)v_1 = 0$$
 & $(A - (1+2i)I)v_2 = v_1$

If L(x) = Ax then find $[L]_{\beta,\beta}$ and $[L]_{\gamma,\gamma}$ with respect to the bases $\beta = \{a_1, b_1, a_2, b_2\}$ and $\gamma = \{v_1, v_2, \overline{v_1}, \overline{v_2}\}.$

Problem 11 Suppose V is a vector space of dimension 4 over \mathbb{R} and $T:V\to V$ is a linear transformation and there exist nonzero vectors v_1,v_2,v_3,v_4 such that:

$$T(v_1) = 7v_1 + v_2,$$
 $T(v_2) = 7v_2,$ $(T - 4Id_V)(v_3) = 0,$ $T(v_4) = 4v_4$

Add a needed condition (if any) and find a Jordan basis β for T and calculate $[T]_{\beta,\beta}$. Also, calculate $\det(T)$ and $\operatorname{trace}(T)$.

- **Problem 12** Suppose A is a 6×6 real matrix with characteristic polynomial $p(t) = (t-3)^3(t-2)^2(t-1)$. What are the possible Jordan forms associated to A. For each form determine the minimal polynomial for A.
- **Problem 13** Let $T: V \to V$ have basis $\beta = \{v_1, \dots, v_n\}$ for which the matrix of T is in Jordan form:

$$[T]_{\beta,\beta} = J_4(3) \oplus J_2(3) \oplus J_1(3) \oplus J_1(3) \oplus J_4(6)$$

Select vectors from β to construct the basis for each eigenspace and generalized eigenspace for T. That is, find $\beta_j \subset \beta$ for which $\mathcal{E}_{\lambda_j} = \operatorname{span}(\beta_j)$ and $\gamma_j \subset \beta$ for which $\operatorname{span}(\gamma_j) = K_{\lambda}$ for each eigenvalue of T.

- **Problem 14** Show $P^{-1}e^{tA}P = e^{tP^{-1}AP}$ for any invertible matrix $P \in \mathbb{C}^{n \times n}$ and matrix $A \in \mathbb{C}^{n \times n}$.
- **Problem 15** If $A = J_2(3) \oplus J_3(7)$ then calculate e^{tA} .
- **Problem 16** Friedberg, Insel and Spence 5th edition, §5.2#15b, c, page 280.