Same rules as Homework 1. **Assume** all vector spaces are **finite dimensional** for ease of mind. There are many results here which do transfer to the world of infinite dimensional vector spaces, but, I'll leave that for another day. We denote $V^* = L(V, \mathbb{F})$.

- Problem 161 Your signature below indicates you have:
 - (a.) I read the handout from Berberian:
 - (b.) I read Chapter 10 of Cook's Lecture Notes:
- **Problem 162** Consider $T \in L(V, W)$. If $U \leq V$ then we can attempt to define a linear transformation $S: V/U \to W$ by the rule:

$$S(x+U) = T(x).$$

- (i.) is S a function? If this is not generally true then what condition do we need to place on U in order that S be a function?
- (ii.) if need be apply the condition found in part (i.), if T is injective does this imply S is injective? What condition is needed to make injectivity of T transfer to S?
- (iii.) if need be apply the condition found in part (i.), if T is surjective does this imply S is surjective? What condition is needed to make surjectivity of T transfer to S?
- **Problem 163** Let V be a vector space over \mathbb{F} and $M, N \leq V$. Prove the **2nd isomorphism theorem:**

$$M/(M \cap N) \approx (M+N)/N$$

Hint: consider the restriction of $\pi: V \to V/N$ to M. Find the kernel and range of $\pi|_M$.

- **Problem 164** Prove the **3rd isomorphism theorem:** If V is a vector space over \mathbb{F} such that $U \leq N \leq V$ then $\frac{V/U}{N/U} \approx \frac{V}{N}$
- **Problem 165** Let V and W be vector spaces over \mathbb{F} and $M \leq V$ and $N \leq W$. Prove

$$\frac{V\times W}{M\times N}\approx \frac{V}{M}\times \frac{W}{N}.$$

Hint: Consider $T: V \times W \to V/M \times V/N$ defined by T(x,y) = (x+M,y+N).

Problem 166 The notation \boxplus denotes the **external direct product** of vector spaces; given V, W vector spaces the point-set $V \times W$ with the usual operations $c(v_1, w_1) + (v_2, w_2) = (cv_1 + v_2, cw_1 + w_2)$ is denoted $V \boxplus W$. **Prove:** If $V = V_1 \oplus V_2$ and $S = S_1 \oplus S_2$ such that $S_1 \leq V_1$ and $S_2 \leq V_2$ then

$$\frac{V}{S} = \frac{V_1 \oplus V_2}{S_1 \oplus S_2} \approx \frac{V_1}{S_1} \boxplus \frac{V_2}{S_2}.$$

- **Problem 167** Prove the following: for V a vector space over a field \mathbb{F} :
 - (a.) for any nonzero vector $v \in V$ there exists a linear functional $\alpha \in V^*$ for which $\alpha(v) \neq 0$
 - **(b.)** a vector $v \in V$ is zero if and only if $\alpha(v) = 0$ for all $\alpha \in V^*$.
- **Problem 168** (continuation of last problem) Prove the following: for V a vector space over a field \mathbb{F} :
 - (c.) if $\alpha \in V^*$ and $\alpha(x) \neq 0$ then $V = \operatorname{span}(x) \oplus \ker(\alpha)$
 - (c.) if $\alpha, \beta \in V^*$ are nonzero then $\ker(\alpha) = \ker(\beta)$ iff $\alpha = k\beta$ for some $k \in \mathbb{F}$
- **Problem 169** Given $V = S \oplus T$, prove $\operatorname{ann}(S) \oplus \operatorname{ann}(T) = (S \oplus T)^*$. Incidentally, another common notation for the annihilator is given by $\operatorname{ann}(S) = S^0$.
- **Problem 170** Show the first isomorphism theorem implies the rank nullity theorem for $T: V \to W$. That is show the first isomorphism theorem implies $\dim(\ker(T)) + \dim(\operatorname{range}(T)) = \dim(V)$. (you are free to use Proposition 10.1.22 of page 341 in my notes)
- **Problem 171** Suppose (V, g) forms a geometry and β is a basis for V for which G is the matrix of g. Furthermore, suppose the linear mapping $L: V \to V$ is a g-orthogonal map such that A is its matrix; $[L(x)]_{\beta} = A[x]_{\beta}$ or simply $[L]_{\beta,\beta} = A$. Show $A^TGA = G$.
- **Problem 172** (Gwyneth's Musical Morphism Problem) Let $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be a metric with matrix $G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$. If $v = \sum_{i=1}^3 v^i e_i = (a,b,c)$ then calculate v_i for i=1,2,3. Also, show $g(v,v) = \sum_{i=1}^3 v^i v_i$ (you can show it in terms of a,b,c or v^1,v^2,v^3 whatever you prefer)
- **Problem 173** Let M be a symmetric matrix and define $\Upsilon(A,B) = AB + BA$ for all $A,B \in \mathbb{R}^{n \times n}$ show Υ is a symmetric, bilinear form.
- **Problem 174** Suppose (V, g) is a real geometry. Show (V^*, g^*) is also a real geometry given we define $g^*(\alpha, \beta) = g(\sharp \alpha, \sharp \beta)$.
- **Problem 175** Let (V, g) be a real geometry. Prove $\sharp \circ \flat = Id_V$ and $\flat \circ \sharp = Id_{V^*}$. See my notes for the necessary definitions.
- **Problem 176** Prove property (ii.) of Theorem 10.4.4.
- **Problem 177** Let V be a real vector space and $x, y \in V$. Define $x \otimes y : V^* \times V^* \to \mathbb{R}$ according to the rule $(x \otimes y)(\alpha, \beta) = \alpha(x)\beta(y)$. Show $x \otimes y$ is a bilinear mapping on $V^* \times V^*$.
- **Problem 178** Continuing the construction in the last problem, if V has basis $\beta = \{v_1, \dots, v_n\}$ show $\Upsilon = \{v_i \otimes v_j \mid 1 \leq i, j \leq n\}$ serves as a basis for $\mathcal{B}(V^*)$. That is, show Υ is LI and that any bilinear mapping $V^* \times V^* \to \mathbb{R}$ can be expressed as a linear combination of the Υ maps.
- **Problem 179** Suppose A, N are square matrices and N is nilpotent of order k. Show $A \otimes N$ is nilpotent of order k.

Problem 180 Let $T: V \times V \times V^* \to \mathbb{R}$ be a multilinear mapping. Determine if $S = T \circ (\sharp, \sharp, \flat)$ is also a multilinear mapping. Also, find the coordinate transformation rules for T and S. Here we assume (V, g) is a real geometry.