Please follow the format which was announced in Blackboard. Thanks!

Your PRINTED NAME indicates you have read through Chapters 1 and 2 of my notes:

- **Problem 1** Let $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix}$. Calculate the following if possible (otherwise, explain why it can't be done)
 - (a.) $A + A^2$
 - **(b.)** $B + B^2$
 - (c.) $A + BB^T$
 - (d.) $A + B^T B$
- **Problem 2** Let $A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$. Prove $A^n = \begin{bmatrix} 3^n & 3^n 2^n \\ 0 & 2^n \end{bmatrix}$ for all $n \in \mathbb{N}$.
- **Problem 3** A standard notation is that $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ in context. We could write $I = I_2$ to emphasize the size if needed. Calculate I(a, b) and [a, b]I.
- **Problem 4** Let $M = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ and $N = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$ where $a, b, x, y \in \mathbb{R}$.
 - (a.) Calculate MN. Relate your result to the product of the complex numbers (a+ib)(x+iy).
 - (b.) Calculate M^{-1} given that at least one of a or b is nonzero. Relate your result to cartesian form of 1/(a+ib).
- **Problem 5** Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$. Choose appropriate sized standard basis and **square** matrix units for the following calculations to make sense and calculate:
 - (a.) Ae_2
 - **(b.)** $e_1^T A$
 - (c.) AE_{12}
 - (d.) $E_{12}A$
- **Problem 6** Suppose A is a symmetric matrix and B is nilpotent of order 3. Let $M = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$. Is M symmetric? Is M^2 symmetric? Is M^3 symmetric. Comment on M^k , for which k can we be certain M^k a symmetric matrix?
- **Problem 7** Let A, B, N, S be invertible square matrices. Solve the following equation for X:

$$(BA)^{-1}XS^{-1} = (NA)^2$$

- Problem 8 Prove Proposition 2.2.6 part (2.) in my notes.
- **Problem 9** Prove the column-by-column multiplication rule for $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. That is, if $B = [B_1 | B_2 | \cdots | B_p]$ then show

$$AB = [AB_1|AB_2|\cdots|AB_p].$$

- **Problem 10** Let A, B be matrices over R which can be multiplied. Prove $(AB)^T = B^T A^T$.
- **Problem 11** For each system below, find a matrix A and a vector of variables v such that the systems below are equivalent to Av = b. Also, state the augmented coefficient matrix for each system.
 - **a.**) x + y = 2, x y = 1.
 - **b.**) a b = 1 + c, b = 3 c.
 - **c.**) $x_1 + x_2 = 1$, $x_2 + x_3 = 0$, $x_3 + x_4 = 1$, $x_4 + x_5 = 0$.
- **Problem 12** Solve each system in the previous problem and write the solution **set** with proper **set** notation. Feel free to use any reasonable method to find the solution. Assume these are equations over \mathbb{Q} .
- **Problem 13** Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Define $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$. Order variables in the order x, y, z, w and find the augmented coefficient matrix for the linear system AX + XB = I.

I realize some of you have not taken Math 231, but, that is no reason to avoid questions of geometry! If anything, that is a reason we should do more of it in here. Towards that end, here are two geometry problems which I'd like you to solve with algebra. Do not take a geometric approach to the following two problems. Thanks!

- **Problem 14** The equation of a plane has the form Ax + By + Cz = D when the normal to the plane is $\langle A, B, C \rangle$. Suppose the points (1, 2, 2), (2, 3, 3) and (0, 0, 2) are on a given plane. Find the possible normals for the given plane.
- **Problem 15** Consider the points (1,2), (3,4), (8,6). Show these points are not on a line. We define a **line** in the plane to be the solution set of Ax + By = C where A, B, C are constants where at least one of A, B is nonzero.
- **Problem 16** Let $A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 3 & 1 & 1 & 0 \\ 0 & 4 & 4 & 0 & 0 \end{bmatrix}$. Use row reduction to calculate rref(A).
- **Problem 17** Let $B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \\ 3 & 5 & 0 \end{bmatrix}$. Use row reduction to calculate rref(B).
- **Problem 18** Let $M = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & -1 \end{bmatrix}$. Calculate rref(M) and $rref(M^T)$ via row reduction.