Your PRINTED NAME indicates you read Chapter 1 and §2.1, 2.2 of the notes: _

Assume R is a commutative ring with identity throughout this homework. Also, $\mathbb{N} = \{1, 2, \dots\}$.

Problem 1 Consider the system of equations in \mathbb{Z}_7 :

$$\begin{array}{rcl} x + 2y & = 1 \\ -2x + 7y & = 2 \end{array}.$$

Find the solution set by writing this system as Av = b and then multiplying by A^{-1} to obtain $v = A^{-1}b$. Hint: you ought to be able to calculate A^{-1} as we did in lecture

Problem 2 Consider the system of equations in \mathbb{Z}_{17} :

$$\begin{array}{rcl} x + 5y &= a \\ -2x + 7y &= b \end{array}.$$

Find the solution set through row-reduction or another technique. In the following cases:

- (a.) a = 1, b = 2
- **(b.)** a = b = 0.

Problem 3 Suppose
$$a_i, b_i, c \in R$$
 for $i \in \mathbb{N}$. Prove $\sum_{i=1}^n (ca_i + b_i) = c \sum_{i=1}^n a_i + \sum_{i=1}^n b_i$ for all $n \in \mathbb{N}$.

Problem 4 Prove Theorem 1.3.11.1; prove matrix multiplication is associative for matrices over R.

Problem 5 Let A, B be matrices over R of the same size and let $c \in R$. Prove $(cA + B)^T = cA^T + B^T$.

Problem 6 The **trace** is defined by $tr(A) = \sum_{i=1}^{n} A_{ii}$ for $A \in \mathbb{R}^{n \times n}$. Prove that:

- (a.) tr(cA+B) = ctr(A) + tr(B) for $c \in R$ and $A, B \in R^{n \times n}$
- **(b.)** tr(AB) = tr(BA) for $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$.

Problem 7 A diagonal matrix $D = diag(a_1, \ldots, a_n)$ can be written as $D = \sum_{i=1}^n a_i E_{ii}$. Give a proof

my mathematical induction that $D^k = \sum_{i=1}^n a_i^k E_{ii}$ for all $k \in \mathbb{N}$.

Hint: I would like for you to use the formulas developed for E_{ij} in Chapter 1 to aid in this proof. Please do not just quote Proposition 1.4.20, however, perhaps the proof I give there will be helpful

Problem 8 Find all $n \times n$ square matrices over R which commute with all other square matrices.

- **Problem 9** Friedberg, Insel and Spence 5th edition, §1.2#19, page 16. (check with my book to make sure you're doing the right problem)
- **Problem 10** Let $W = \{(x,y) \mid x+y \ge 0\}$. Prove or disprove that W is a subspace of \mathbb{R}^2 .
- **Problem 11** Let $W = \{(x_2 x_4, x_2, x_4, x_4) \mid x_2, x_4 \in \mathbb{Q}\}$. Prove or disprove that W is a subspace of \mathbb{Q}^4 .
- **Problem 12** A square matrix is said to be **antisymmetric** if $A^T = -A$. Let W be the set of all antisymetric $n \times n$ matrices over a field \mathbb{F} . Show $W \leq \mathbb{F}^{n \times n}$.
- **Problem 13** Let $W = \{f(t) \in \mathbb{R}[t] \mid f''(3) = 1\}$. Prove or disprove that W is a subspace of real polynomials in t.
- **Problem 14** Friedberg, Insel and Spence 5th edition, §1.3#12, page 21. (check with my book to make sure you're doing the right problem)
- **Problem 15** Friedberg, Insel and Spence 5th edition, §1.3#13, page 21. (check with my book to make sure you're doing the right problem)
- **Problem 16** Friedberg, Insel and Spence 5th edition, §1.3#15, page 22. (check with my book to make sure you're doing the right problem)