Please follow the format which was announced in Blackboard. Thanks!

Your PRINTED NAME indicates you have read through Chapter 3 of the notes:

Problem 19 Let
$$M = \begin{bmatrix} 1 & 1 & 3 & 1 \\ 3 & 3 & 5 & 2 \end{bmatrix}$$
.

- (a.) Calculate rref(M) via Gaussian elimination over \mathbb{R} ,
- (b.) Find the solution set of x + y + 3z = 1 and 3x + 3y + 5z = 2,
- (c.) Find the solution set of $x_1 + x_2 + 3x_3 + x_4 = 0$ and $3x_1 + 3x_2 + 5x_3 + 2x_4 = 0$.

Remark: the problem above intends to get you to think about how a single rref matrix may have more than one use. There are many different angles we can look at a given row-reduction.

Problem 20 Suppose $[A|b] = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ 1 & 3 & 1 & 0 \end{bmatrix}$ is the augmented coefficient matrix of a system

$$2x + y = 1$$
, $x + 2y = 2$, $x + 3y + z = 0$

over a field F. Find the solution set via Gaussian elimination for:

- (a.) $\mathbb{F} = \mathbb{Z}_3 = \{0, 1, 2\}$ where $2^{-1} = 2$ since 2(2) = 4 = 1 etc.
- (b.) $\mathbb{F} = \mathbb{Q}$
- (c.) $\mathbb{F} = \mathbb{R}$

Problem 21 Given 2 equations in 4 unknowns over \mathbb{Z}_5 what are the possible sizes of the solution set?

Problem 22 Let k be a real parameter. Consider the system:

$$x + ky = 2$$
$$kx + 4y = 1$$

Find the solution set for all three cases.

Problem 23 Let $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ over \mathbb{R} . Find elementary matrices E_1, E_2, \dots, E_k for which

 $E_k \cdots E_2 E_1 A = I$. Also, express A as a product of elementary matrices. Is A invertible?

Problem 24 Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 3 & 4 \end{bmatrix}$ over \mathbb{R} . Find elementary matrices E_1, E_2, \dots, E_k for which

 $E_k \cdots E_2 E_1 A = \text{rref}(A)$. If possible, write A as a product of elementary matrices. If not, explain why it is not possible.

Problem 25 Suppose $A \in \mathbb{R}^{4\times 4}$ such that vectors v_1, v_2, v_3, v_4 give

$$Av_1 = e_1 + e_2 + e_3 + e_4,$$
 $Av_2 = e_2 + e_3 + e_4,$ $Av_3 = e_3 + e_4,$ $Av_4 = e_4.$

Is A invertible? If so, find a formula for A^{-1} based on the given vectors v_1, v_2, v_3, v_4 .

Problem 26 Let
$$A = \begin{bmatrix} 2 & 2 & 3 \\ 4 & 5 & 7 \\ 0 & 1 & 2 \end{bmatrix}$$
. Calculate A^{-1} .

- **Problem 27** For which value of k is $\{(1,2,3),(1,0,1),(2,k,8)\}$ a linearly dependent set?
- **Problem 28** Either prove or disprove that $S = \{(1, 2, 3, 4), (0, 1, 1, 0), (0, 0, 1, 1)\}$ is a LI set in \mathbb{R}^4
- **Problem 29** Let v = (1, 1, 1, 2) and w = (2, 2, 5, -1).
 - (a.) is $v \in \text{span}\{(1, 1, 4, -3), (2, 2, 8, -6)\}$?
 - **(b.)** is $w \in \text{span}\{(1, 1, 4, -3), (2, 2, 8, -6), v\}$?
- **Problem 30** (feel free to use technology for the row reduction here) Let

$$S = \{(1, 1, 1, 2, 2, 2), (4, 0, 0, 0, 0, 4)\}$$

and

$$T = \{(1, 1, 0, 0, 6, 7), (0, 0, 1, 2, -4, -5), (3, 3, 3, 3, 3, 3, 3)\}$$

- (a.) Is $S \subseteq \text{span}(T)$? If not, which vector(s) in S are **not** in span(T)?
- **(b.)** Is $T \subseteq \text{span}(S)$? If not, which vector(s) in T are **not** in span(S)?
- **Problem 31** Consider x + 2y + 3z = 0 and x y + z = 0. Find a linearly independent set S such that the solution set of the pair of given equations is span(S).
- **Problem 32** Consider $S = \{(1, 2, 3, 4), (0, 1, 1, 7)\}$. Find a system of equations in x_1, x_2, x_3, x_4 for which span(S) is the solution set.
- **Problem 33** Let $V = \text{span}\{(1,1,1),(2,4,2)\}$ and $W = \text{span}\{(3,2,2),(1,0,1)\}$. Find a LI set S such that $\text{span}(S) = V \cap W$. Hint: it's easier to combine equations than spans.
- **Problem 34** Suppose A, B are invertible matrices of the same size. Show $M = \begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ is invertible.
- **Problem 35** We define $I \in R^{n \times n}$ by $I_{ij} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$. If $x \in R^{n \times 1}$ then show Ix = x. Then, use transposition to derive vI = v for all $v \in R^{1 \times n}$.
- **Problem 36** Let $f(x) = Ax^3 + Bx^2 + Cx + D$ be a cubic polynomial for which f(-1) = 0 and f'(-1) = 3 and f''(-1) = 8 and f'''(-1) = 6. Find the values of A, B, C, D.