Your Printed name indicates you read Chapter 2 and §3.1 of the notes:

We assume \mathbb{F} is a field and V, W are vector spaces over \mathbb{F} .

- **Problem 17** Let $W = \{(x+y, y+z, 2x-w, x+y+z+w) \mid x, y, z, w \in \mathbb{F}\}$. Is W a subspace of \mathbb{F}^4 ?
- **Problem 18** Friedberg, Insel and Spence 5th edition, §1.2#21, page 16.
- **Problem 19** Let V_1, V_2 be vector spaces over \mathbb{F} . Suppose $W_1 \leq V_1$ and $W_2 \leq V_2$. Prove $W_1 \times W_2 \leq V_1 \times V_2$.
- **Problem 20** Consider $S = \{t^2 + 1, t^2 1, t + 1, t 1\} \subseteq P_4(\mathbb{R}).$
 - (a.) Show S is **not** linearly independent
 - **(b.)** Find a basis for $W = span\{S\}$
- **Problem 21** Let $W = \{A \in \mathbb{R}^{3\times 3} \mid tr(A) = 0 \& A^T = A\}$. Show $W \leq \mathbb{R}^{3\times 3}$ and find a basis for W. What is the dimension of W?
- **Problem 22** Let $W = \{(x, y, z) \in \mathbb{Z}_5^3 \mid x y 2z = 0\}.$
 - (a.) Find a basis for W.
 - **(b.)** Calculate dim(W).
 - (c.) Calculate the cardinality of W, we denote this |W|.
- **Problem 23** Consider $V = \mathbb{C}^{2\times 2}$ as a vector space over \mathbb{R} . Let $W = \{A \in V \mid A^T = -iA\}$. Find a basis for W.
- **Problem 24** Let $\beta = \{(1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1)\}$. Find the coordinates of v = (a,b,c,d) with respect to β .
- **Problem 25** Let $\beta = \{1, (t-1), (t-1)^2, (t-1)^3\}$. Let $f(t) = a + bt + ct^2 + dt^3$ where $a, b, c, d \in \mathbb{R}$. Calculate $[f(t)]_{\beta}$. Hint: use calculus.
- **Problem 26** Consider $W = \{f(t) \in P_2(\mathbb{R}) \mid \int_0^1 f(t)dt = 0\}$. Show $W \leq P_2(\mathbb{R})$ and find a basis for W.
- **Problem 27** Suppose $W_1 = \{f(x) \in P_4(\mathbb{R}) \mid f(1) = 0\}$ and $W_2 = \{f(x) \in P_4(\mathbb{R}) \mid f(2) = 0\}$ and $W_3 = span\{x + 1, x^4 1\}$
 - (a.) Find a basis for $W_1 \cap W_2$
 - **(b.)** Find a basis for $W_1 \cap W_3$.
- **Problem 28** Friedberg, Insel and Spence 5th edition, §1.5#13, page 42.
- **Problem 29** Friedberg, Insel and Spence 5th edition, §1.5#20, page 43.
- **Problem 30** Friedberg, Insel and Spence 5th edition, §1.6#4, page 55.
- **Problem 31** Let $S, T \in \mathcal{L}(V)$. Prove $S \circ T \in \mathcal{L}(V)$.
- **Problem 32** Friedberg, Insel and Spence 5th edition, §2.1#21, page 76.