Your Printed name indicates you read Chapter 2 of the notes:

Assume \mathbb{F} is a field and $n \in \mathbb{N}$. Notice the notation $V(\mathbb{F})$ indicates V is a vector space over the field \mathbb{F} . For example, $\mathbb{C}^{3\times 3}(\mathbb{R})$ is a real vector space whereas $\mathbb{C}^{3\times 3}(\mathbb{C})$ is a complex vector space.

Problem 11 In each of the following, give at least one reason why W is not a subspace of V over \mathbb{F}

(a.)
$$W = \{(x, y, z) \mid x, y, z \ge 0\}$$
 in $V = \mathbb{R}^3$ over $\mathbb{F} = \mathbb{R}$,

(b.)
$$W = \{1 + ax + bx^2 \mid a, b \in \mathbb{R}\}$$
 in $V = \mathbb{R}[x]$ over $\mathbb{F} = \mathbb{R}[x]$

(c.)
$$W = \{(x, y) \mid x, y \in \mathbb{R}\} \text{ in } V = \mathbb{C}^2 \text{ over } \mathbb{F} = \mathbb{C},$$

(d.)
$$W = \mathbb{R} - \mathbb{Q}$$
 in $V = \mathbb{R}$ over \mathbb{Q}

Problem 12 Consider $S = \{1, x+1, x^2+2x+1, x^3+3x^2+3x+1\}$. Prove S is a linearly independent spanning set for $P_3(\mathbb{R})$ (these polynomials up to third order with real coefficients).

Problem 13 Let
$$J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 and define $W = \{M \in \mathbb{R}^{2 \times 2} \mid MJ = JM\}$.

- (a.) show W is a subspace of $\mathbb{R}^{2\times 2}$
- **(b.)** Find a basis β for W and calculate $\begin{bmatrix} a & b \\ c & d \end{bmatrix}_{\beta}$ in terms of a and b.

Problem 14 Consider $W = \{A \in \mathbb{C}^{3\times 3} \mid A^T = -A, A_{12} + iA_{23} = 0\}$. Prove W is a subspace of $\mathbb{C}^{3\times 3}(\mathbb{R})$. Find a basis β for W and write the formula for $\Phi_{\beta}: W \to \mathbb{R}^n$ for appropriate n.

Problem 15 Consider $W = \{(a, a+b, a+b+c, a+b+c) \mid a, b, c \in \mathbb{F}\}$. Prove W is a subspace of \mathbb{F}^4 and prove dim(W) = 3. What is the cardinality of W? (break into cases as needed).

Problem 16 Define subspaces of $P_3(\mathbb{R})$ as follows:

$$U = \{ f(x) \in P_3(\mathbb{R}) \mid f(2) = 0 \}$$
 & $V = \text{span}\{3 + x, 3 - x\}.$

Find a basis for $U \cap V$. Use Theorem 2.7.5 to decide what U + V must be on the basis of dimensional arguments.

Problem 17 Let $V = C^0(\mathbb{R})$ be the vector space of all continuous functions on \mathbb{R} . Define

$$W = \left\{ f \in W \mid \lim_{x \to 1} f(x) = 0 \right\}.$$

Show $W \leq V$ and prove that W is infinite dimensional.

Problem 18 If V_1 and V_2 are vector spaces over \mathbb{F} then $V = V_1 \times V_2$ defines a vector space over \mathbb{F} by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 & $c(x_1, x_2) = (cx_1, cx_2)$

for all $(x_1, x_2), (y_1, y_2) \in V_1 \times V_2$ and $c \in \mathbb{F}$. Let $S_1 \subseteq V_1$ and $S_2 \subseteq V_2$. Prove:

(a.) If S_1 and S_2 are LI then $(S_1 \times \{0\}) \cup (\{0\} \times S_2)$ is LI subset of $V_1 \times V_2$

(b.) If
$$V_1 = \text{span}(S_1)$$
 and $V_2 = \text{span}(S_2)$ then $\text{span}((S_1 \times \{0\}) \cup (\{0\} \times S_2)) = V_1 \times V_2$.

Problem 19 Consider $A \in \mathbb{R}^{m \times n}$. Define

$$W = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^m \mid Ax = 0 \& \exists (z \in \mathbb{R}^n)(Az = y)\}$$

Prove $W \leq \mathbb{R}^n \times \mathbb{R}^m$. Calculate dim(W).

Problem 20 Let $W = \{A \in \mathbb{R}^{n \times n} \mid A^T = -A\}$. Prove $W \leq \mathbb{R}^{n \times n}$ and calculate dim(W).